Gaussian highpass guided image filtering
- URL: http://arxiv.org/abs/2503.03284v1
- Date: Wed, 05 Mar 2025 09:12:12 GMT
- Title: Gaussian highpass guided image filtering
- Authors: Lei Zhao, Chuanjiang He,
- Abstract summary: We introduce a Prior Model based on Gaussian (highpass/lowpass) Filtering (PM-GF)<n>In the PM-GF, the guidance structure determined by Gaussian highpass filtering is obviously transferred to the filtering output.<n>We propose several Gaussian highpass GIFs (GH-GIFs) based on the PM-GF by emulating the original GIF and some improvements, i.e., using PM-GF instead of LAM in these GIFs.
- Score: 6.207147299773745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Guided image filtering (GIF) is a popular smoothing technique, in which an additional image is used as a structure guidance for noise removal with edge preservation. The original GIF and some of its subsequent improvements are derived from a two-parameter local affine model (LAM), where the filtering output is a local affine transformation of the guidance image, but the input image is not taken into account in the LAM formulation. In this paper, we first introduce a single-parameter Prior Model based on Gaussian (highpass/lowpass) Filtering (PM-GF), in which the filtering output is the sum of a weighted portion of Gaussian highpass filtering of the guidance image and Gaussian smoothing of the input image. In the PM-GF, the guidance structure determined by Gaussian highpass filtering is obviously transferred to the filtering output, thereby better revealing the structure transfer mechanism of guided filtering. Then we propose several Gaussian highpass GIFs (GH-GIFs) based on the PM-GF by emulating the original GIF and some improvements, i.e., using PM-GF instead of LAM in these GIFs. Experimental results illustrate that the proposed GIFs outperform their counterparts in several image processing applications.
Related papers
- Frequency-aware Feature Fusion for Dense Image Prediction [99.85757278772262]
We propose Frequency-Aware Feature Fusion (FreqFusion) for dense image prediction tasks.
FreqFusion integrates an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator.
Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries.
arXiv Detail & Related papers (2024-08-23T07:30:34Z) - Data-Driven Filter Design in FBP: Transforming CT Reconstruction with Trainable Fourier Series [3.6508148866314163]
We introduce a trainable filter for computed tomography (CT) reconstruction within the filtered backprojection (FBP) framework.
This method overcomes the limitation in noise reduction by optimizing Fourier series coefficients to construct the filter.
Our filter can be easily integrated into existing CT reconstruction models, making it an adaptable tool for a wide range of practical applications.
arXiv Detail & Related papers (2024-01-29T10:47:37Z) - Filter Pruning for Efficient CNNs via Knowledge-driven Differential
Filter Sampler [103.97487121678276]
Filter pruning simultaneously accelerates the computation and reduces the memory overhead of CNNs.
We propose a novel Knowledge-driven Differential Filter Sampler(KDFS) with Masked Filter Modeling(MFM) framework for filter pruning.
arXiv Detail & Related papers (2023-07-01T02:28:41Z) - Improved Anisotropic Gaussian Filters [1.2499537119440245]
Elongated anisotropic Gaussian filters are used for the orientation estimation of fibers.
This paper proposes a modified algorithm for 2D anisotropic Gaussian filters and shows that this improves their precision.
arXiv Detail & Related papers (2023-03-23T13:59:57Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
We propose a novel frequency-aware architecture, in which the domain-specific features are filtered out in the transformed frequency domain.
Experiments on three benchmarks demonstrate significant performance, outperforming the state-of-the-art methods by a margin of 3%, 4% and 9%, respectively.
arXiv Detail & Related papers (2022-03-24T07:26:29Z) - Fourier Series Expansion Based Filter Parametrization for Equivariant
Convolutions [73.33133942934018]
2D filter parametrization technique plays an important role when designing equivariant convolutions.
New equivariant convolution method based on the proposed filter parametrization method, named F-Conv.
F-Conv evidently outperforms previous filter parametrization based method in image super-resolution task.
arXiv Detail & Related papers (2021-07-30T10:01:52Z) - Unsharp Mask Guided Filtering [53.14430987860308]
The goal of this paper is guided image filtering, which emphasizes the importance of structure transfer during filtering.
We propose a new and simplified formulation of the guided filter inspired by unsharp masking.
Our formulation enjoys a filtering prior to a low-pass filter and enables explicit structure transfer by estimating a single coefficient.
arXiv Detail & Related papers (2021-06-02T19:15:34Z) - Improved Adaptive Type-2 Fuzzy Filter with Exclusively Two Fuzzy
Membership Function for Filtering Salt and Pepper Noise [30.639740354770282]
fuzzy filter is proposed for filtering salt and pepper noise from the images.
The proposed filter is validated on standard images with various noise levels.
The performance of the proposed filter is compared with the various state-of-the-art methods in terms of peak signal-to-noise ratio and computation time.
arXiv Detail & Related papers (2020-08-10T13:18:42Z) - Noise Homogenization via Multi-Channel Wavelet Filtering for
High-Fidelity Sample Generation in GANs [47.92719758687014]
We propose a novel multi-channel wavelet-based filtering method for Generative Adversarial Networks (GANs)
When embedding a wavelet deconvolution layer in the generator, the resultant GAN, called WaveletGAN, takes advantage of the wavelet deconvolution to learn a filtering with multiple channels.
We conducted benchmark experiments on the Fashion-MNIST, KMNIST and SVHN datasets through an open GAN benchmark tool.
arXiv Detail & Related papers (2020-05-14T03:40:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.