Frequency-aware Feature Fusion for Dense Image Prediction
- URL: http://arxiv.org/abs/2408.12879v1
- Date: Fri, 23 Aug 2024 07:30:34 GMT
- Title: Frequency-aware Feature Fusion for Dense Image Prediction
- Authors: Linwei Chen, Ying Fu, Lin Gu, Chenggang Yan, Tatsuya Harada, Gao Huang,
- Abstract summary: We propose Frequency-Aware Feature Fusion (FreqFusion) for dense image prediction tasks.
FreqFusion integrates an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator.
Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries.
- Score: 99.85757278772262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense image prediction tasks demand features with strong category information and precise spatial boundary details at high resolution. To achieve this, modern hierarchical models often utilize feature fusion, directly adding upsampled coarse features from deep layers and high-resolution features from lower levels. In this paper, we observe rapid variations in fused feature values within objects, resulting in intra-category inconsistency due to disturbed high-frequency features. Additionally, blurred boundaries in fused features lack accurate high frequency, leading to boundary displacement. Building upon these observations, we propose Frequency-Aware Feature Fusion (FreqFusion), integrating an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator. The ALPF generator predicts spatially-variant low-pass filters to attenuate high-frequency components within objects, reducing intra-class inconsistency during upsampling. The offset generator refines large inconsistent features and thin boundaries by replacing inconsistent features with more consistent ones through resampling, while the AHPF generator enhances high-frequency detailed boundary information lost during downsampling. Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries. Extensive experiments across various dense prediction tasks confirm its effectiveness. The code is made publicly available at https://github.com/Linwei-Chen/FreqFusion.
Related papers
- Fourier-enhanced Implicit Neural Fusion Network for Multispectral and Hyperspectral Image Fusion [12.935592400092712]
Implicit neural representations (INR) have made significant strides in various vision-related domains.
INR is prone to losing high-frequency information and is confined to the lack of global perceptual capabilities.
This paper introduces a Fourier-enhanced Implicit Neural Fusion Network (FeINFN) specifically designed for MHIF task.
arXiv Detail & Related papers (2024-04-23T16:14:20Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.
Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.
Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
We propose a spectral enhanced rectangle Transformer to model the spatial and spectral correlation in hyperspectral images.
For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain.
For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise.
arXiv Detail & Related papers (2023-04-03T09:42:13Z) - Learning Spatial-Frequency Transformer for Visual Object Tracking [15.750739748843744]
Recent trackers adopt the Transformer to combine or replace the widely used ResNet as their new backbone network.
We believe these operations ignore the spatial prior of the target object which may lead to sub-optimal results.
We propose a unified Spatial-Frequency Transformer that models the spatial Prior and High-frequency emphasis Attention (GPHA) simultaneously.
arXiv Detail & Related papers (2022-08-18T13:46:12Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
We propose a novel frequency-aware architecture, in which the domain-specific features are filtered out in the transformed frequency domain.
Experiments on three benchmarks demonstrate significant performance, outperforming the state-of-the-art methods by a margin of 3%, 4% and 9%, respectively.
arXiv Detail & Related papers (2022-03-24T07:26:29Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
Single image super-resolution(SISR) is an ill-posed problem that aims to obtain high-resolution (HR) output from low-resolution (LR) input.
Despite the high peak signal-to-noise ratios(PSNR) results, it is difficult to determine whether the model correctly adds desired high-frequency details.
We propose FreqNet, an intuitive pipeline from the frequency domain perspective, to solve this problem.
arXiv Detail & Related papers (2021-11-21T11:49:12Z) - Low Pass Filter for Anti-aliasing in Temporal Action Localization [15.139834271977913]
This paper aims to verify the existence of aliasing in temporal action localization methods.
It investigates utilizing low pass filters to solve this problem by inhibiting the high-frequency band.
Experiments demonstrate that anti-aliasing with low pass filters in TAL is advantageous and efficient.
arXiv Detail & Related papers (2021-04-23T03:57:34Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
We introduce a generic Inference-aware Feature Filtering (IFF) module that can easily be combined with modern detectors.
IFF performs closed-loop optimization by leveraging high-level semantics to enhance the convolutional features.
IFF can be fused with CNN-based object detectors in a plug-and-play manner with negligible computational cost overhead.
arXiv Detail & Related papers (2020-06-23T02:57:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.