論文の概要: Enhancing Visual Forced Alignment with Local Context-Aware Feature Extraction and Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2503.03286v1
- Date: Wed, 05 Mar 2025 09:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:52:10.173106
- Title: Enhancing Visual Forced Alignment with Local Context-Aware Feature Extraction and Multi-Task Learning
- Title(参考訳): 局所文脈を考慮した特徴抽出とマルチタスク学習による視覚強制アライメントの強化
- Authors: Yi He, Lei Yang, Shilin Wang,
- Abstract要約: 本稿では,視覚強制アライメント(VFA)に対する新しいアプローチを紹介する。
発話とそれに対応する唇の動きを正確に同期させることを目的としている。
本稿では,ローカルなコンテキスト認識機能抽出器を統合し,マルチタスク学習を用いてグローバルなコンテキスト特徴とローカルなコンテキスト特徴の両方を洗練する新しいVFA手法を提案する。
- 参考スコア(独自算出の注目度): 17.916965377736638
- License:
- Abstract: This paper introduces a novel approach to Visual Forced Alignment (VFA), aiming to accurately synchronize utterances with corresponding lip movements, without relying on audio cues. We propose a novel VFA approach that integrates a local context-aware feature extractor and employs multi-task learning to refine both global and local context features, enhancing sensitivity to subtle lip movements for precise word-level and phoneme-level alignment. Incorporating the improved Viterbi algorithm for post-processing, our method significantly reduces misalignments. Experimental results show our approach outperforms existing methods, achieving a 6% accuracy improvement at the word-level and 27% improvement at the phoneme-level in LRS2 dataset. These improvements offer new potential for applications in automatically subtitling TV shows or user-generated content platforms like TikTok and YouTube Shorts.
- Abstract(参考訳): 本稿では,視覚強制アライメント(VFA)に新たなアプローチを導入し,音声の手がかりに頼らずに,発話を対応する唇の動きと正確に同期させることを目的とする。
本稿では,局所的文脈認識機能抽出器を統合した新しいVFA手法を提案する。多タスク学習を用いて,グローバル・ローカル両方の文脈特徴を洗練し,単語レベルと音素レベルの正確なアライメントのための微妙な唇の動きに対する感度を高める。
ポストプロセッシングのための改良されたビタビアルゴリズムを組み込むことにより,誤認識を大幅に低減する。
実験の結果,提案手法は既存の手法よりも優れており,単語レベルでは6%,音素レベルでは27%の精度向上を実現している。
これらの改良は、テレビ番組やTikTokやYouTube Shortsなどのユーザー生成コンテンツプラットフォームを自動的にサブティットするアプリケーションに、新たな可能性をもたらす。
関連論文リスト
- DIAL: Dense Image-text ALignment for Weakly Supervised Semantic Segmentation [8.422110274212503]
弱教師付きセマンティックセグメンテーションアプローチは通常、初期シード生成にクラスアクティベーションマップ(CAM)に依存する。
DALNetは、テキストの埋め込みを利用して、さまざまなレベルの粒度のオブジェクトの包括的理解と正確な位置決めを強化する。
このアプローチは特に、シングルステージの手法として、より効率的なエンドツーエンドプロセスを可能にします。
論文 参考訳(メタデータ) (2024-09-24T06:51:49Z) - LipGER: Visually-Conditioned Generative Error Correction for Robust Automatic Speech Recognition [46.438575751932866]
LipGERはノイズロスASRのための視覚的手がかりを利用するためのフレームワークである。
LipGERは単語誤り率を1.1%-49.2%の範囲で改善することを示す。
また、リップモーションキューを備えた仮説転写ペアを備えた大規模データセットであるLipHypをリリースする。
論文 参考訳(メタデータ) (2024-06-06T18:17:59Z) - Optimizing Two-Pass Cross-Lingual Transfer Learning: Phoneme Recognition
and Phoneme to Grapheme Translation [9.118302330129284]
本研究は低リソース言語における2パスの言語間変換学習を最適化する。
共有調音特性に基づいて音素を融合させることにより,音素語彙のカバレッジを最適化する。
音素と音素の訓練中に, 現実的なASR雑音に対するグローバルな音素ノイズ発生装置を導入し, 誤りの伝搬を低減する。
論文 参考訳(メタデータ) (2023-12-06T06:37:24Z) - APoLLo: Unified Adapter and Prompt Learning for Vision Language Models [58.9772868980283]
本稿では,視覚言語モデルに対する適応学習とプロンプト学習を組み合わせた統合マルチモーダルアプローチであるAPoLLoを提案する。
APoLLoは10種類の画像認識データセットに対して、MaPLe(SOTA)よりも6.03%向上している。
論文 参考訳(メタデータ) (2023-12-04T01:42:09Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Structured Video-Language Modeling with Temporal Grouping and Spatial Grounding [112.3913646778859]
簡単なビデオ言語モデリングフレームワークであるS-ViLMを提案する。
これには、学習領域オブジェクトのアライメントと時間認識機能を促進するために、クリップ間の空間的接地と、クリップ内の時間的グループ化という、2つの新しい設計が含まれている。
S-ViLMは4つの下流タスクにおいて、最先端の手法を大幅に超えている。
論文 参考訳(メタデータ) (2023-03-28T22:45:07Z) - Weakly-supervised Representation Learning for Video Alignment and
Analysis [16.80278496414627]
本稿では,新しい表現学習手法LRPropを紹介する。
提案アルゴリズムは、学習した特徴をよりよくチューニングするために、正規化されたSoftDTW損失も利用する。
我々の新しい表現学習パラダイムは、時間的アライメントタスクにおける技術の現状を一貫して上回ります。
論文 参考訳(メタデータ) (2023-02-08T14:01:01Z) - Self-Supervised Predictive Learning: A Negative-Free Method for Sound
Source Localization in Visual Scenes [91.59435809457659]
自己監督予測学習(英: Self-Supervised Predictive Learning, SSPL)は、音像定位法である。
SSPLはSoundNet-Flickrの8.6% cIoUと3.4% AUCの大幅な改善を実現している。
論文 参考訳(メタデータ) (2022-03-25T01:42:42Z) - ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and
Intra-modal Knowledge Integration [48.01536973731182]
ROSITAと呼ばれる新しい視覚・言語事前学習手法を提案する。
クロスモーダルとイントラモーダルの知識を統合されたシーングラフに統合し、セマンティックアライメントを強化する。
ROSITAは6つのベンチマークデータセット上での3つの典型的な視覚・言語タスクにおいて、既存の最先端メソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2021-08-16T13:16:58Z) - Multitask Learning for Class-Imbalanced Discourse Classification [74.41900374452472]
マルチタスクアプローチは,現在のベンチマークで7%のマイクロf1コアを改善できることを示す。
また,NLPにおける資源不足問題に対処するための追加手法の比較検討を行った。
論文 参考訳(メタデータ) (2021-01-02T07:13:41Z) - Mutual Information Maximization for Effective Lip Reading [99.11600901751673]
本稿では,局所的特徴レベルとグローバルなシーケンスレベルの両方について,相互情報制約を導入することを提案する。
これら2つの利点を組み合わせることで, 有効な唇読解法として, 識別性と頑健性の両方が期待できる。
論文 参考訳(メタデータ) (2020-03-13T18:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。