Differential Machine Learning for Time Series Prediction
- URL: http://arxiv.org/abs/2503.03302v2
- Date: Sun, 09 Mar 2025 02:42:26 GMT
- Title: Differential Machine Learning for Time Series Prediction
- Authors: Akash Yadav, Eulalia Nualart,
- Abstract summary: We propose a novel approach that enhances neural network predictions through differential learning.<n>We develop a differential long short-term memory (Diff-LSTM) network that uses a shared LSTM cell to simultaneously process both data streams.
- Score: 1.3812010983144802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate time series prediction is challenging due to the inherent nonlinearity and sensitivity to initial conditions. We propose a novel approach that enhances neural network predictions through differential learning, which involves training models on both the original time series and its differential series. Specifically, we develop a differential long short-term memory (Diff-LSTM) network that uses a shared LSTM cell to simultaneously process both data streams, effectively capturing intrinsic patterns and temporal dynamics. Evaluated on the Mackey-Glass, Lorenz, and R\"ossler chaotic time series, as well as a real-world financial dataset from ACI Worldwide Inc., our results demonstrate that the Diff- LSTM network outperforms prevalent models such as recurrent neural networks, convolutional neural networks, and bidirectional and encoder-decoder LSTM networks in both short-term and long-term predictions. This framework offers a promising solution for enhancing time series prediction, even when comprehensive knowledge of the underlying dynamics of the time series is not fully available.
Related papers
- Reduced-order modeling of unsteady fluid flow using neural network ensembles [0.0]
We propose using bagging, a commonly used ensemble learning technique, to develop a fully data-driven reduced-order model framework.
The framework uses CAEs for spatial reconstruction of the full-order model and LSTM ensembles for time-series prediction.
Results show that the presented framework effectively reduces error propagation and leads to more accurate time-series prediction of latent variables at unseen points.
arXiv Detail & Related papers (2024-02-08T03:02:59Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Evaluation of deep learning models for multi-step ahead time series
prediction [1.3764085113103222]
We present an evaluation study that compares the performance of deep learning models for multi-step ahead time series prediction.
Our deep learning methods compromise of simple recurrent neural networks, long short term memory (LSTM) networks, bidirectional LSTM, encoder-decoder LSTM networks, and convolutional neural networks.
arXiv Detail & Related papers (2021-03-26T04:07:11Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.