論文の概要: From Infants to AI: Incorporating Infant-like Learning in Models Boosts Efficiency and Generalization in Learning Social Prediction Tasks
- arxiv url: http://arxiv.org/abs/2503.03361v1
- Date: Wed, 05 Mar 2025 10:40:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:53:54.419819
- Title: From Infants to AI: Incorporating Infant-like Learning in Models Boosts Efficiency and Generalization in Learning Social Prediction Tasks
- Title(参考訳): 幼児からAIへ:モデルにおける幼児のような学習を取り入れることで、社会的予測課題の学習における効率性と一般化が促進される
- Authors: Shify Treger, Shimon Ullman,
- Abstract要約: 新たな概念の学習における初期概念の利用は,学習の効率化と学習の効率化につながることを示す。
その結果, 概念が人間的な方法で学習された場合, 出現する表現の方が有用であることが示唆された。
- 参考スコア(独自算出の注目度): 3.105144691395886
- License:
- Abstract: Early in development, infants learn a range of useful concepts, which can be challenging from a computational standpoint. This early learning comes together with an initial understanding of aspects of the meaning of concepts, e.g., their implications, causality, and using them to predict likely future events. All this is accomplished in many cases with little or no supervision, and from relatively few examples, compared with current network models. In learning about objects and human-object interactions, early acquired and possibly innate concepts are often used in the process of learning additional, more complex concepts. In the current work, we model how early-acquired concepts are used in the learning of subsequent concepts, and compare the results with standard deep network modeling. We focused in particular on the use of the concepts of animacy and goal attribution in learning to predict future events. We show that the use of early concepts in the learning of new concepts leads to better learning (higher accuracy) and more efficient learning (requiring less data). We further show that this integration of early and new concepts shapes the representation of the concepts acquired by the model. The results show that when the concepts were learned in a human-like manner, the emerging representation was more useful, as measured in terms of generalization to novel data and tasks. On a more general level, the results suggest that there are likely to be basic differences in the conceptual structures acquired by current network models compared to human learning.
- Abstract(参考訳): 発達の初期段階では、幼児は様々な有用な概念を学習するが、これは計算的な観点からは困難である。
この早期学習は、概念の意味の側面、例えば、その意味、因果関係、そしてそれらを使用して将来の出来事を予測することに関する最初の理解と結びつく。
これら全ては、ほとんど、あるいは全く監督されていないケースや、現在のネットワークモデルと比較して比較的少数の例で達成される。
物体や人間と物体の相互作用について学ぶ際には、より複雑で複雑な概念を学習する過程において、早期に獲得され、おそらく生まれつきの概念がしばしば用いられる。
現在の研究では、初期取得概念がその後の概念の学習にどのように使用されるのかをモデル化し、その結果を標準のディープ・ネットワーク・モデリングと比較する。
特に、将来の出来事を予測するための学習において、アニマシーの概念とゴール属性の使用に焦点を当てた。
新たな概念の学習における初期概念の使用は,より優れた学習(高精度)とより効率的な学習(少ないデータ要求)につながることを示す。
さらに、この初期概念と新しい概念の統合が、モデルによって獲得された概念の表現を形作ることを示す。
その結果、概念が人間的な方法で学習された場合、新しいデータやタスクへの一般化の観点からみると、出現する表現はより有用であることがわかった。
より一般的なレベルでは、人間の学習と比較して、現在のネットワークモデルによって得られた概念構造に基本的な違いがあることが示唆されている。
関連論文リスト
- Restyling Unsupervised Concept Based Interpretable Networks with Generative Models [14.604305230535026]
本稿では,事前学習された生成モデルの潜在空間に概念特徴をマッピングすることに依存する新しい手法を提案する。
本手法の有効性を,解釈可能な予測ネットワークの精度,再現性,学習概念の忠実性,一貫性の観点から定量的に検証した。
論文 参考訳(メタデータ) (2024-07-01T14:39:41Z) - Concept Distillation: Leveraging Human-Centered Explanations for Model
Improvement [3.026365073195727]
概念活性化ベクトル(Concept Activation Vectors, CAV)は、ある概念に対するモデルの感度と潜在的なバイアスを推定する。
微調整によりモデルバイアスを低減するため,CAVをポストホック解析からアンテホックトレーニングに拡張する。
本稿では,いくつかの分類問題に対する概念感受性トレーニングの応用について述べる。
論文 参考訳(メタデータ) (2023-11-26T14:00:14Z) - Attributing Learned Concepts in Neural Networks to Training Data [5.930268338525991]
コンバージェンス(収束)の証拠として,概念の上位1万個の画像を取り除き,モデルの再トレーニングを行うと,ネットワーク内の概念の位置が変化しない。
このことは、概念の発達を知らせる特徴が、概念形成の堅牢さを暗示して、その先例にまたがるより拡散した方法で広がることを示唆している。
論文 参考訳(メタデータ) (2023-10-04T20:26:59Z) - COPEN: Probing Conceptual Knowledge in Pre-trained Language Models [60.10147136876669]
概念的知識は人間の認知と知識基盤の基本である。
既存の知識探索作業は、事前訓練された言語モデル(PLM)の事実知識のみに焦点を当て、概念知識を無視する。
PLMが概念的類似性によってエンティティを編成し、概念的特性を学習し、コンテキスト内でエンティティを概念化するかどうかを調査する3つのタスクを設計する。
タスクのために、393のコンセプトをカバーする24kのデータインスタンスを収集、注釈付けします。
論文 参考訳(メタデータ) (2022-11-08T08:18:06Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
我々は,機械が一般化可能な概念を学習する能力を調べるため,新しいデータセットであるHINT(Hand written arithmetic with INTegers)を提案する。
HINTでは、イメージなどの生信号から概念がどのように認識されるかを学ぶことが機械のタスクである。
我々は、RNN、Transformer、GPT-3など、様々なシーケンス・ツー・シーケンスモデルで広範囲に実験を行った。
論文 参考訳(メタデータ) (2021-03-02T01:32:54Z) - Bongard-LOGO: A New Benchmark for Human-Level Concept Learning and
Reasoning [78.13740873213223]
ボナード問題(BP)は、インテリジェントシステムにおける視覚認知へのインスピレーションとして導入された。
我々は人間レベルの概念学習と推論のための新しいベンチマークBongard-LOGOを提案する。
論文 参考訳(メタデータ) (2020-10-02T03:19:46Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z) - A Competence-aware Curriculum for Visual Concepts Learning via Question
Answering [95.35905804211698]
本稿では,視覚概念学習のための質問応答型カリキュラムを提案する。
視覚概念を学習するためのニューラルシンボリックな概念学習者と学習プロセスを導くための多次元項目応答理論(mIRT)モデルを設計する。
CLEVRの実験結果から,コンピテンスを意識したカリキュラムにより,提案手法は最先端のパフォーマンスを実現することが示された。
論文 参考訳(メタデータ) (2020-07-03T05:08:09Z) - Revisit Systematic Generalization via Meaningful Learning [15.90288956294373]
最近の研究は、ニューラルネットワークはそのような認知能力に本質的に効果がないように見えると主張している。
新しい概念と古い概念のセマンティックリンクを条件としたシーケンス・ツー・シーケンス・モデルの合成スキルを再評価する。
論文 参考訳(メタデータ) (2020-03-14T15:27:29Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
問題解決可能なトレーニングダイナミクスを備えたニューラルネットワークのクラスを提示する。
現実的なディープラーニング環境において,モデルの予測とトレーニングのダイナミクスとの間には,よい一致がある。
我々の結果は、異なる学習率でトレーニングされたモデルの特性に光を当てたと信じています。
論文 参考訳(メタデータ) (2020-03-04T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。