論文の概要: JamMa: Ultra-lightweight Local Feature Matching with Joint Mamba
- arxiv url: http://arxiv.org/abs/2503.03437v1
- Date: Wed, 05 Mar 2025 12:12:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:52:03.857099
- Title: JamMa: Ultra-lightweight Local Feature Matching with Joint Mamba
- Title(参考訳): JamMa:超軽量のローカル機能とジョイントマンバ
- Authors: Xiaoyong Lu, Songlin Du,
- Abstract要約: 我々は,1つのGPU上に収束し,推論における性能・効率バランスを著しく向上する,超軽量なMambaベースのマッチング器JamMaを提案する。
特徴マッチングのためのMambaの可能性を解き明かすため,JEGOというスキャンマージ戦略を用いたJoint Mambaを提案し,(1)高周波数相互干渉を実現するために2つの画像のジョイントスキャン,(2)シーケンス長を削減するためのスキップステップによる効率的なスキャン,(3)グローバル受容場,(4)Omnidirectional特徴表現を実現する。
- 参考スコア(独自算出の注目度): 8.878053726388075
- License:
- Abstract: Existing state-of-the-art feature matchers capture long-range dependencies with Transformers but are hindered by high spatial complexity, leading to demanding training and highlatency inference. Striking a better balance between performance and efficiency remains a challenge in feature matching. Inspired by the linear complexity O(N) of Mamba, we propose an ultra-lightweight Mamba-based matcher, named JamMa, which converges on a single GPU and achieves an impressive performance-efficiency balance in inference. To unlock the potential of Mamba for feature matching, we propose Joint Mamba with a scan-merge strategy named JEGO, which enables: (1) Joint scan of two images to achieve high-frequency mutual interaction, (2) Efficient scan with skip steps to reduce sequence length, (3) Global receptive field, and (4) Omnidirectional feature representation. With the above properties, the JEGO strategy significantly outperforms the scan-merge strategies proposed in VMamba and EVMamba in the feature matching task. Compared to attention-based sparse and semi-dense matchers, JamMa demonstrates a superior balance between performance and efficiency, delivering better performance with less than 50% of the parameters and FLOPs.
- Abstract(参考訳): 既存の最先端機能マーカは、Transformerとの長距離依存関係をキャプチャするが、空間的な複雑さによって妨げられ、トレーニングや高遅延推論が要求される。
パフォーマンスと効率のバランスを改善することは、機能マッチングの課題です。
マンバの線形複雑性O(N)に着想を得て,1つのGPU上に収束し,推論における性能・効率バランスを著しく向上する,超軽量なマンバベースのマッチング器JamMaを提案する。
特徴マッチングのためのMambaの可能性を解き明かすため,JEGOというスキャンマージ戦略を用いたJoint Mambaを提案し,(1)高周波数相互干渉を実現するために2つの画像のジョイントスキャン,(2)シーケンス長を削減するためのスキップステップによる効率的なスキャン,(3)グローバル受容場,(4)Omnidirectional特徴表現を実現する。
上記の特性により、JEGO戦略は機能マッチングタスクにおいてVMambaとEVMambaで提案されたスキャンマージ戦略を著しく上回っている。
JamMaは注意ベースのスパースとセミセンスのマーカと比較して、性能と効率のバランスが良く、パラメータとFLOPの50%未満でより良いパフォーマンスを提供する。
関連論文リスト
- MambaGlue: Fast and Robust Local Feature Matching With Mamba [9.397265252815115]
そこで我々は,MambaGlueと呼ばれる,新しいMambaベースの局所特徴マッチング手法を提案する。
Mambaは最先端のアーキテクチャであり、トレーニングと推論の両方において、優れたスピードで急速に認識されるようになった。
私たちのMambaGlueは、実世界のアプリケーションにおける堅牢性と効率のバランスを達成します。
論文 参考訳(メタデータ) (2025-02-01T15:43:03Z) - Mixture-of-Mamba: Enhancing Multi-Modal State-Space Models with Modality-Aware Sparsity [56.0251572416922]
状態空間モデル(SSM)は、シーケンシャルモデリングのためのトランスフォーマーの効率的な代替手段として登場した。
本稿では,Mambaブロックのモダリティ特異的パラメータ化により,モダリティを意識した疎結合を実現する新しいSSMアーキテクチャを提案する。
マルチモーダル事前学習環境におけるMixture-of-Mambaの評価を行った。
論文 参考訳(メタデータ) (2025-01-27T18:35:05Z) - Detail Matters: Mamba-Inspired Joint Unfolding Network for Snapshot Spectral Compressive Imaging [40.80197280147993]
本研究では,HSI再建の非線形および不適切な特徴を克服するために,マンバインスパイアされたジョイント・アンフォールディング・ネットワーク(MiJUN)を提案する。
本稿では,初期最適化段階への依存を減らすために,高速化された展開ネットワーク方式を提案する。
テンソルモード-$k$展開をMambaネットワークに統合することにより,Mambaによる走査戦略を洗練する。
論文 参考訳(メタデータ) (2025-01-02T13:56:23Z) - Manta: Enhancing Mamba for Few-Shot Action Recognition of Long Sub-Sequence [33.38031167119682]
数ショットのアクション認識では、ビデオの長いサブシーケンスは、アクション全体をより効果的に表現する。
最近のMambaは、長いシーケンスをモデリングする効率を示すが、MambaをFSARに直接適用することは、局所的な特徴モデリングとアライメントの重要性を見落としている。
これらの課題を解決するために,Matryoshka MAmba と CoNtrasTive LeArning フレームワーク (Manta) を提案する。
Mantaは、SSv2、Kineetics、UCF101、HMDB51などの著名なベンチマークで、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-12-10T13:03:42Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - Hi-Mamba: Hierarchical Mamba for Efficient Image Super-Resolution [42.259283231048954]
状態空間モデル(SSM)は、線形複雑性を伴う長距離依存性をモデル化する上で、強力な表現能力を示している。
画像超解像(SR)のための新しい階層型マンバネットワーク、すなわちHi-Mambaを提案する。
論文 参考訳(メタデータ) (2024-10-14T04:15:04Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
本研究では,長い文脈の理解能力を高めるReMambaを提案する。
ReMambaは2段階のプロセスで選択的圧縮と適応のテクニックを取り入れている。
論文 参考訳(メタデータ) (2024-08-28T02:47:27Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
局所的意図的マンバブロックは、大域的コンテキストと局所的詳細の両方を線形複雑性でキャプチャする。
このモデルは, 256x256の解像度で, ImageNet上の様々なモデルスケールでDiTの性能を上回り, 優れたスケーラビリティを示す。
ImageNet 256x256 と 512x512 の最先端拡散モデルと比較すると,最大 62% GFLOP の削減など,我々の最大のモデルには顕著な利点がある。
論文 参考訳(メタデータ) (2024-08-05T16:39:39Z) - EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba [19.062950348441426]
本研究は、軽量モデル設計における視覚状態空間モデルの可能性を探究し、EfficientVMambaと呼ばれる新しい効率的なモデル変種を導入することを提案する。
我々のEfficientVMambaは、グローバルおよびローカルの両方の表現機能を利用するように設計されたビルディングブロックを構成する効率的なスキップサンプリングにより、アトラスベースの選択的スキャン手法を統合する。
実験の結果,EfficientVMambaは計算複雑性を縮小し,様々な視覚タスクの競合結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-03-15T02:48:47Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
ネスト構造であるMamba-in-Mamba(MiM-ISTD)を開発した。
MiM-ISTDはSOTA法より8倍高速で、2048×2048$のイメージでテストすると、GPUメモリ使用率を62.2$%削減する。
論文 参考訳(メタデータ) (2024-03-04T15:57:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。