論文の概要: Unified Mind Model: Reimagining Autonomous Agents in the LLM Era
- arxiv url: http://arxiv.org/abs/2503.03459v2
- Date: Thu, 06 Mar 2025 03:32:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 12:14:41.172419
- Title: Unified Mind Model: Reimagining Autonomous Agents in the LLM Era
- Title(参考訳): 統一マインドモデル:LLM時代の自律エージェントを想像する
- Authors: Pengbo Hu, Xiang Ying,
- Abstract要約: 大規模言語モデル(LLM)は、最近、ドメイン、タスク、言語間で顕著な機能を示した。
我々は,自律エージェントの迅速な作成を促進するためのガイダンスを提供する,新しい理論認知アーキテクチャである統一マインドモデル(UMM)を提案する。
- 参考スコア(独自算出の注目度): 1.3812010983144802
- License:
- Abstract: Large language models (LLMs) have recently demonstrated remarkable capabilities across domains, tasks, and languages (e.g., ChatGPT and GPT-4), reviving the research of general autonomous agents with human-like cognitive abilities. Such human-level agents require semantic comprehension and instruction-following capabilities, which exactly fall into the strengths of LLMs. Although there have been several initial attempts to build human-level agents based on LLMs, the theoretical foundation remains a challenging open problem. In this paper, we propose a novel theoretical cognitive architecture, the Unified Mind Model (UMM), which offers guidance to facilitate the rapid creation of autonomous agents with human-level cognitive abilities. Specifically, our UMM starts with the global workspace theory and further leverage LLMs to enable the agent with various cognitive abilities, such as multi-modal perception, planning, reasoning, tool use, learning, memory, reflection and motivation. Building upon UMM, we then develop an agent-building engine, MindOS, which allows users to quickly create domain-/task-specific autonomous agents without any programming effort.
- Abstract(参考訳): 大規模言語モデル(LLM)は、最近、ドメイン、タスク、言語(例えば、ChatGPT、GPT-4)にまたがる顕著な能力を示し、人間のような認知能力を持つ一般的な自律エージェントの研究を復活させた。
このような人間レベルのエージェントは意味的理解と命令追従能力を必要としており、LLMの強みに正確に該当する。
LLMをベースとした人間レベルのエージェントを構築する試みはいくつかあったが、理論上の基礎は依然として挑戦的なオープンな問題である。
本稿では,人間レベルの認知能力を持つ自律エージェントの迅速な作成を促進するためのガイダンスを提供する,新しい理論的認知アーキテクチャである統一マインドモデルを提案する。
具体的には、UMMはグローバルワークスペース理論から始まり、LLMを活用して、マルチモーダル認識、計画、推論、ツール使用、学習、記憶、リフレクション、モチベーションといった様々な認知能力を持つエージェントを可能にする。
UMMをベースとしてエージェント構築エンジンであるMindOSを開発しました。
関連論文リスト
- WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
大型言語モデル(LLM)は人間のような知性を模倣することができる。
WorkArena++は、Webエージェントの計画、問題解決、論理的/論理的推論、検索、コンテキスト的理解能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-07-07T07:15:49Z) - A Survey on Self-Evolution of Large Language Models [116.54238664264928]
大規模言語モデル(LLM)は、様々な分野やインテリジェントエージェントアプリケーションにおいて大きく進歩している。
この問題に対処するために、LLMが自律的に獲得し、洗練し、モデル自身によって生成された経験から学ぶことができる自己進化的アプローチが急速に成長している。
論文 参考訳(メタデータ) (2024-04-22T17:43:23Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Professional Agents -- Evolving Large Language Models into Autonomous
Experts with Human-Level Competencies [28.492095703621267]
本稿では,プロフェッショナルエージェント(PAgents)の概念を紹介する。
提案するPAgentsフレームワークは, 生成, 進化, シナジーのための三層構造である。
我々は、PAgentの高度化と統合が、複雑なドメインに対する専門的な熟達を示すAIシステムに繋がる可能性があると主張している。
論文 参考訳(メタデータ) (2024-02-06T01:48:53Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
大規模言語モデル(LLM)は、洗練された言語理解と生成能力を備えた人工知能の分野に革命をもたらした。
本稿では,LLMを用いた自律型マルチエージェントシステムが自律性とアライメントの動的相互作用をどのようにバランスさせるかを分析するために,総合的な多次元分類法を提案する。
論文 参考訳(メタデータ) (2023-10-05T16:37:29Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Brain in a Vat: On Missing Pieces Towards Artificial General
Intelligence in Large Language Models [83.63242931107638]
本稿では,知的エージェントの4つの特徴について述べる。
実世界の物体との活発な関わりは、概念的表現を形成するためのより堅牢な信号をもたらすと我々は主張する。
我々は、人工知能分野における将来的な研究の方向性を概説して結論付ける。
論文 参考訳(メタデータ) (2023-07-07T13:58:16Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。