Bridging Synthetic-to-Real Gaps: Frequency-Aware Perturbation and Selection for Single-shot Multi-Parametric Mapping Reconstruction
- URL: http://arxiv.org/abs/2503.03475v1
- Date: Wed, 05 Mar 2025 13:10:11 GMT
- Title: Bridging Synthetic-to-Real Gaps: Frequency-Aware Perturbation and Selection for Single-shot Multi-Parametric Mapping Reconstruction
- Authors: Linyu Fan, Che Wang, Ming Ye, Qizhi Yang, Zejun Wu, Xinghao Ding, Yue Huang, Jianfeng Bao, Shuhui Cai, Congbo Cai,
- Abstract summary: We propose frequency-aware perturbation and selection (FPS) for medical imaging reconstruction.<n> perturbation activates domain-invariant feature learning within uncertainty, while selection refines optimal solutions within perturbation.<n> experiments on synthetic data, along with diverse real clinical cases from 5 healthy volunteers, 94 ischemic stroke patients, and 46 meningioma patients, demonstrate the superiority and clinical applicability of FPS.
- Score: 29.118404814391432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-centric artificial intelligence (AI) has remarkably advanced medical imaging, with emerging methods using synthetic data to address data scarcity while introducing synthetic-to-real gaps. Unsupervised domain adaptation (UDA) shows promise in ground truth-scarce tasks, but its application in reconstruction remains underexplored. Although multiple overlapping-echo detachment (MOLED) achieves ultra-fast multi-parametric reconstruction, extending its application to various clinical scenarios, the quality suffers from deficiency in mitigating the domain gap, difficulty in maintaining structural integrity, and inadequacy in ensuring mapping accuracy. To resolve these issues, we proposed frequency-aware perturbation and selection (FPS), comprising Wasserstein distance-modulated frequency-aware perturbation (WDFP) and hierarchical frequency-aware selection network (HFSNet), which integrates frequency-aware adaptive selection (FAS), compact FAS (cFAS) and feature-aware architecture integration (FAI). Specifically, perturbation activates domain-invariant feature learning within uncertainty, while selection refines optimal solutions within perturbation, establishing a robust and closed-loop learning pathway. Extensive experiments on synthetic data, along with diverse real clinical cases from 5 healthy volunteers, 94 ischemic stroke patients, and 46 meningioma patients, demonstrate the superiority and clinical applicability of FPS. Furthermore, FPS is applied to diffusion tensor imaging (DTI), underscoring its versatility and potential for broader medical applications. The code is available at https://github.com/flyannie/FPS.
Related papers
- AMM-Diff: Adaptive Multi-Modality Diffusion Network for Missing Modality Imputation [2.8498944632323755]
In clinical practice, full imaging is not always feasible, often due to complex acquisition protocols, stringent privacy regulations, or specific clinical needs.<n>A promising solution is missing data imputation, where absent modalities are generated from available ones.<n>We propose an Adaptive Multi-Modality Diffusion Network (AMM-Diff), a novel diffusion-based generative model capable of handling any number of input modalities and generating the missing ones.
arXiv Detail & Related papers (2025-01-22T12:29:33Z) - FgC2F-UDiff: Frequency-guided and Coarse-to-fine Unified Diffusion Model for Multi-modality Missing MRI Synthesis [6.475175425060296]
We propose a novel unified synthesis model, the Frequency-guided and Coarse-to-fine Unified Diffusion Model (FgC2F-UDiff)
arXiv Detail & Related papers (2025-01-07T04:42:45Z) - Convolutional Deep Operator Networks for Learning Nonlinear Focused Ultrasound Wave Propagation in Heterogeneous Spinal Cord Anatomy [0.0]
Focused ultrasound therapy is a promising tool for optimally targeted treatment of spinal cord injuries.
Current approaches rely on computer simulations to solve the governing wave propagation equations.
We propose a convolutional deep operator network (DeepONet) to rapidly predict FUS pressure fields in patient spinal cords.
arXiv Detail & Related papers (2024-12-20T18:03:38Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.<n>Our model is based on neural operators, a discretization-agnostic architecture.<n>Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories [2.7719338074999547]
We introduce a novel deep-compressed sensing approach that uses 3D window attention and flexible, temporally extendable acquisition trajectories.
Our method significantly reduces both training and inference times compared to existing approaches.
Tests with real data show that our approach outperforms current state-of-theart techniques.
arXiv Detail & Related papers (2024-09-19T13:45:13Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data:
Break Training Data Bottleneck in Artificial Intelligence [27.618154067389018]
Diffusion magnetic resonance imaging (MRI) is the only imaging modality for non-invasive movement detection of inmagnitude water molecules.
DWI acquired by multi-shot techniques can achieve higher resolution, better signal-to-noise ratio, and lower geometric distortion than single-shot.
These artifacts cannot be removed prospectively, leading to the absence of artifact-free training labels.
We propose a Physics-Informed Deep DWI reconstruction method (PIDD) to synthesize high-quality paired training data.
arXiv Detail & Related papers (2022-10-20T16:27:54Z) - DA-VSR: Domain Adaptable Volumetric Super-Resolution For Medical Images [69.63915773870758]
We present a novel algorithm called domain adaptable super-resolution (DA-VSR) to better bridge the domain inconsistency gap.
DA-VSR uses a unified feature extraction backbone and a series of network heads to improve image quality over different planes.
We demonstrate that DA-VSR significantly improves super-resolution quality across numerous datasets of different domains.
arXiv Detail & Related papers (2022-10-11T03:16:35Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.