Find First, Track Next: Decoupling Identification and Propagation in Referring Video Object Segmentation
- URL: http://arxiv.org/abs/2503.03492v1
- Date: Wed, 05 Mar 2025 13:32:49 GMT
- Title: Find First, Track Next: Decoupling Identification and Propagation in Referring Video Object Segmentation
- Authors: Suhwan Cho, Seunghoon Lee, Minhyeok Lee, Jungho Lee, Sangyoun Lee,
- Abstract summary: Referring video object segmentation aims to segment and track a target object in a video using a natural language prompt.<n>We introduce FindTrack, a novel decoupled framework that separates target identification from mask propagation.<n>We demonstrate that FindTrack outperforms existing methods on public benchmarks.
- Score: 19.190651264839065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring video object segmentation aims to segment and track a target object in a video using a natural language prompt. Existing methods typically fuse visual and textual features in a highly entangled manner, processing multi-modal information together to generate per-frame masks. However, this approach often struggles with ambiguous target identification, particularly in scenes with multiple similar objects, and fails to ensure consistent mask propagation across frames. To address these limitations, we introduce FindTrack, a novel decoupled framework that separates target identification from mask propagation. FindTrack first adaptively selects a key frame by balancing segmentation confidence and vision-text alignment, establishing a robust reference for the target object. This reference is then utilized by a dedicated propagation module to track and segment the object across the entire video. By decoupling these processes, FindTrack effectively reduces ambiguities in target association and enhances segmentation consistency. We demonstrate that FindTrack outperforms existing methods on public benchmarks.
Related papers
- Multi-Granularity Video Object Segmentation [36.06127939037613]
We propose a large-scale, densely annotated multi-granularity video object segmentation (MUG-VOS) dataset.
We automatically collected a training set that assists in tracking both salient and non-salient objects, and we also curated a human-annotated test set for reliable evaluation.
In addition, we present memory-based mask propagation model (MMPM), trained and evaluated on MUG-VOS dataset.
arXiv Detail & Related papers (2024-12-02T13:17:41Z) - Learning Referring Video Object Segmentation from Weak Annotation [78.45828085350936]
Referring video object segmentation (RVOS) is a task that aims to segment the target object in all video frames based on a sentence describing the object.
We propose a new annotation scheme that reduces the annotation effort by 8 times, while providing sufficient supervision for RVOS.
Our scheme only requires a mask for the frame where the object first appears and bounding boxes for the rest of the frames.
arXiv Detail & Related papers (2023-08-04T06:50:52Z) - Segment Anything Meets Point Tracking [116.44931239508578]
This paper presents a novel method for point-centric interactive video segmentation, empowered by SAM and long-term point tracking.
We highlight the merits of point-based tracking through direct evaluation on the zero-shot open-world Unidentified Video Objects (UVO) benchmark.
Our experiments on popular video object segmentation and multi-object segmentation tracking benchmarks, including DAVIS, YouTube-VOS, and BDD100K, suggest that a point-based segmentation tracker yields better zero-shot performance and efficient interactions.
arXiv Detail & Related papers (2023-07-03T17:58:01Z) - Referring Camouflaged Object Detection [88.63744004901655]
Ref-COD aims to segment specified camouflaged objects based on a small set of referring images with salient target objects.
We first assemble a large-scale dataset, called R2C7K, which consists of 7K images covering 64 object categories in real-world scenarios.
arXiv Detail & Related papers (2023-06-13T04:15:37Z) - Tag-Based Attention Guided Bottom-Up Approach for Video Instance
Segmentation [83.13610762450703]
Video instance is a fundamental computer vision task that deals with segmenting and tracking object instances across a video sequence.
We introduce a simple end-to-end train bottomable-up approach to achieve instance mask predictions at the pixel-level granularity, instead of the typical region-proposals-based approach.
Our method provides competitive results on YouTube-VIS and DAVIS-19 datasets, and has minimum run-time compared to other contemporary state-of-the-art performance methods.
arXiv Detail & Related papers (2022-04-22T15:32:46Z) - Robust Visual Tracking by Segmentation [103.87369380021441]
Estimating the target extent poses a fundamental challenge in visual object tracking.
We propose a segmentation-centric tracking pipeline that produces a highly accurate segmentation mask.
Our tracker is able to better learn a target representation that clearly differentiates the target in the scene from background content.
arXiv Detail & Related papers (2022-03-21T17:59:19Z) - Prototypical Cross-Attention Networks for Multiple Object Tracking and
Segmentation [95.74244714914052]
Multiple object tracking and segmentation requires detecting, tracking, and segmenting objects belonging to a set of given classes.
We propose Prototypical Cross-Attention Network (PCAN), capable of leveraging rich-temporal information online.
PCAN outperforms current video instance tracking and segmentation competition winners on Youtube-VIS and BDD100K datasets.
arXiv Detail & Related papers (2021-06-22T17:57:24Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
This paper addresses the task of unsupervised video multi-object segmentation.
We introduce a novel approach for more accurate and efficient unseen-temporal segmentation.
We evaluate the proposed approach on DAVIS$_17$ and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
arXiv Detail & Related papers (2021-04-10T14:39:44Z) - An Exploration of Target-Conditioned Segmentation Methods for Visual
Object Trackers [24.210580784051277]
We show how to transform a bounding-box tracker into a segmentation tracker.
Our analysis shows that such methods allow trackers to compete with recently proposed segmentation trackers.
arXiv Detail & Related papers (2020-08-03T16:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.