論文の概要: Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization
- arxiv url: http://arxiv.org/abs/2503.03503v1
- Date: Wed, 05 Mar 2025 13:47:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:52:59.603355
- Title: Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization
- Title(参考訳): 協調専門家による多目的分子最適化
- Authors: Jiajun Yu, Yizhen Zheng, Huan Yee Koh, Shirui Pan, Tianyue Wang, Haishuai Wang,
- Abstract要約: 我々は,多目的分子最適化のための協調型大規模言語モデル(LLM)システムであるMultiMolを提案する。
6つの多目的最適化タスクに対する評価において、MultiMolは既存の手法を著しく上回り、82.30%の成功率を達成した。
- 参考スコア(独自算出の注目度): 51.104444856052204
- License:
- Abstract: Molecular optimization is a crucial yet complex and time-intensive process that often acts as a bottleneck for drug development. Traditional methods rely heavily on trial and error, making multi-objective optimization both time-consuming and resource-intensive. Current AI-based methods have shown limited success in handling multi-objective optimization tasks, hampering their practical utilization. To address this challenge, we present MultiMol, a collaborative large language model (LLM) system designed to guide multi-objective molecular optimization. MultiMol comprises two agents, including a data-driven worker agent and a literature-guided research agent. The data-driven worker agent is a large language model being fine-tuned to learn how to generate optimized molecules considering multiple objectives, while the literature-guided research agent is responsible for searching task-related literature to find useful prior knowledge that facilitates identifying the most promising optimized candidates. In evaluations across six multi-objective optimization tasks, MultiMol significantly outperforms existing methods, achieving a 82.30% success rate, in sharp contrast to the 27.50% success rate of current strongest methods. To further validate its practical impact, we tested MultiMol on two real-world challenges. First, we enhanced the selectivity of Xanthine Amine Congener (XAC), a promiscuous ligand that binds both A1R and A2AR, successfully biasing it towards A1R. Second, we improved the bioavailability of Saquinavir, an HIV-1 protease inhibitor with known bioavailability limitations. Overall, these results indicate that MultiMol represents a highly promising approach for multi-objective molecular optimization, holding great potential to accelerate the drug development process and contribute to the advancement of pharmaceutical research.
- Abstract(参考訳): 分子最適化は極めて複雑で時間を要するプロセスであり、しばしば薬物開発におけるボトルネックとして機能する。
従来の手法は試行錯誤に大きく依存しており、時間消費とリソース集約の両方を多目的最適化する。
現在のAIベースの手法では、多目的最適化タスクの処理に成功し、実用的利用を妨げている。
この課題に対処するために,多目的分子最適化のための協調型大規模言語モデル(LLM)システムであるMultiMolを提案する。
MultiMolは、データ駆動労働者エージェントと文学誘導研究エージェントの2つのエージェントから構成される。
データ駆動作業者エージェントは、複数の目的を考慮した最適化分子の生成方法を学ぶために微調整された大きな言語モデルであり、文献誘導研究エージェントは、タスク関連文献を検索して、最も有望な最適化候補の特定を容易にする有用な事前知識を見つける責任を負う。
6つの多目的最適化タスクに対する評価では、MultiMolは既存の手法を著しく上回り、82.30%の成功率を達成している。
実世界の2つの課題に対して,MultiMolの有効性を検証した。
まず、Xanthine Amine Congener (XAC) の選択的選択性を高め、A1RとA2ARの両方に結合し、A1Rにバイアスを与えることに成功した。
第2に,HIV-1プロテアーゼ阻害薬サキナビルの生体利用性の向上について検討した。
これらの結果から,MultiMolは多目的分子最適化の極めて有望なアプローチであり,医薬品開発プロセスの加速と医薬品研究の進展に寄与する可能性が高いことが示唆された。
関連論文リスト
- MOLLM: Multi-Objective Large Language Model for Molecular Design -- Optimizing with Experts [3.9194654197529784]
分子設計は、薬物発見、材料科学、化学工学といった分野の発展に重要な役割を果たしている。
分子設計のための多目的大規模言語モデル(MOLLM)は、ドメイン固有の知識と大規模言語モデルの適応性を組み合わせた新しいフレームワークである。
論文 参考訳(メタデータ) (2025-02-18T13:25:00Z) - MALT: Improving Reasoning with Multi-Agent LLM Training [66.9481561915524]
MALT(Multi-Agent LLM Training)は、推論プロセスを生成、検証、改善ステップに分割する、新しいポストトレーニング戦略である。
MATH、GSM8K、CSQAでは、MALTは、それぞれ15.66%、7.42%、9.40%の相対的な改善で同じベースラインLLMを上回っている。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
本稿では,MLLMのマルチモーダル推論能力を高めるための選好最適化プロセスを提案する。
我々は,マルチモーダルCoT性能を向上する,MPO(Mixed Preference Optimization)と呼ばれるシンプルで効果的な手法を開発した。
我々のモデルであるInternVL2-8B-MPOは、MathVista上で67.0の精度を実現し、InternVL2-8Bを8.7ポイント上回り、10倍のInternVL2-76Bに匹敵する性能を達成する。
論文 参考訳(メタデータ) (2024-11-15T18:59:27Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
本研究では, 標的親和性, 薬物類似性, 合成性に関連する目的を組み込んだ, 汎用的な「プラグイン」分子生成モデルを構築した。
我々はPSO-ENPを多目的分子生成と最適化のための最適変種として同定する。
論文 参考訳(メタデータ) (2024-04-10T02:37:24Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z) - DrugAssist: A Large Language Model for Molecule Optimization [29.95488215594247]
DrugAssistは、人間と機械の対話を通じて最適化を行う対話型分子最適化モデルである。
DrugAssistは、単一および複数プロパティの最適化において、主要な結果を得た。
分子最適化タスクの微調整言語モデルのための,MomoOpt-Instructionsと呼ばれる大規模命令ベースデータセットを公開している。
論文 参考訳(メタデータ) (2023-12-28T10:46:56Z) - Pareto Optimization to Accelerate Multi-Objective Virtual Screening [11.356174411578515]
EGFRおよびIGF1Rの選択的二重阻害剤であると考えられる4M分子の仮想ライブラリーを探索するツールを開発した。
このワークフローと関連するオープンソースソフトウェアは、分子設計プロジェクトのスクリーニング負担を軽減することができる。
論文 参考訳(メタデータ) (2023-10-16T17:19:46Z) - Molecule optimization via multi-objective evolutionary in implicit
chemical space [8.72872397589296]
MOMOは、化学知識の学習と多目的進化探索を組み合わせた多目的分子最適化フレームワークである。
4つの多目的特性と類似性最適化タスクにおけるMOMOの性能を実証し、ケーススタディを通してMOMOの探索能力を示す。
論文 参考訳(メタデータ) (2022-12-17T09:09:23Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
目的の選好から最適な政策を学習する単一政策 MORL の問題について検討する。
既存の方法は、多目的決定プロセスの正確な知識のような強い仮定を必要とする。
モデルベースエンベロップ値 (EVI) と呼ばれる新しいアルゴリズムを提案し, 包含された多目的$Q$学習アルゴリズムを一般化する。
論文 参考訳(メタデータ) (2020-11-19T22:35:31Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
マルチエージェント逆逆強化学習 (MA-AIRL) は, 単エージェントAIRLをマルチエージェント問題に適用する最近の手法である。
本稿では,従来の手法よりもサンプル効率が高く,スケーラブルなマルチエージェント逆RLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-24T20:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。