A Conceptual Model for Attributions in Event-Centric Knowledge Graphs
- URL: http://arxiv.org/abs/2503.03563v2
- Date: Tue, 22 Apr 2025 16:54:10 GMT
- Title: A Conceptual Model for Attributions in Event-Centric Knowledge Graphs
- Authors: Florian Plötzky, Katarina Britz, Wolf-Tilo Balke,
- Abstract summary: This paper is an extension of our original work and introduces attributions that allow for the representation of facts that are only valid in a specific viewpoint.<n>We develop a conceptual model that allows for the representation of viewpoint-dependent information.
- Score: 2.520684634800451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of narratives as a means of fusing information from knowledge graphs (KGs) into a coherent line of argumentation has been the subject of recent investigation. Narratives are especially useful in event-centric knowledge graphs in that they provide a means to connect different real-world events and categorize them by well-known narrations. However, specifically for controversial events, a problem in information fusion arises, namely, multiple viewpoints regarding the validity of certain event aspects, e.g., regarding the role a participant takes in an event, may exist. Expressing those viewpoints in KGs is challenging because disputed information provided by different viewpoints may introduce inconsistencies. Hence, most KGs only feature a single view on the contained information, hampering the effectiveness of narrative information access. This paper is an extension of our original work and introduces attributions, i.e., parameterized predicates that allow for the representation of facts that are only valid in a specific viewpoint. For this, we develop a conceptual model that allows for the representation of viewpoint-dependent information. As an extension, we enhance the model by a conception of viewpoint-compatibility. Based on this, we deepen our original deliberations on the model's effects on information fusion and provide additional grounding in the literature.
Related papers
- Talking Point based Ideological Discourse Analysis in News Events [62.18747509565779]
We propose a framework motivated by the theory of ideological discourse analysis to analyze news articles related to real-world events.
Our framework represents the news articles using a relational structure - talking points, which captures the interaction between entities, their roles, and media frames along with a topic of discussion.
We evaluate our framework's ability to generate these perspectives through automated tasks - ideology and partisan classification tasks, supplemented by human validation.
arXiv Detail & Related papers (2025-04-10T02:52:34Z) - EventGround: Narrative Reasoning by Grounding to Eventuality-centric Knowledge Graphs [41.928535719157054]
We propose an initial comprehensive framework called EventGround to tackle the problem of grounding free-texts to eventuality-centric knowledge graphs.
We provide simple yet effective parsing and partial information extraction methods to tackle these problems.
Our framework, incorporating grounded knowledge, achieves state-of-the-art performance while providing interpretable evidence.
arXiv Detail & Related papers (2024-03-30T01:16:37Z) - Fine-Grained Modeling of Narrative Context: A Coherence Perspective via Retrospective Questions [48.18584733906447]
This work introduces an original and practical paradigm for narrative comprehension, stemming from the characteristics that individual passages within narratives tend to be more cohesively related than isolated.
We propose a fine-grained modeling of narrative context, by formulating a graph dubbed NarCo, which explicitly depicts task-agnostic coherence dependencies.
arXiv Detail & Related papers (2024-02-21T06:14:04Z) - Enhancing Argument Structure Extraction with Efficient Leverage of
Contextual Information [79.06082391992545]
We propose an Efficient Context-aware model (ECASE) that fully exploits contextual information.
We introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information.
Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-08T08:47:10Z) - It's the Same Old Story! Enriching Event-Centric Knowledge Graphs by
Narrative Aspects [0.3655021726150368]
We introduce a novel and lightweight structure for event-centric knowledge graphs, which for the first time allows for queries incorporating viewpoint-dependent and narrative aspects.
Our experiments prove the effective incorporation of subjective attributions for event participants and show the benefits of specifically tailored indexes for narrative query processing.
arXiv Detail & Related papers (2022-05-08T14:00:41Z) - Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graphs [18.56742938427262]
Multi-hop reasoning over real-life knowledge graphs (KGs) is a highly challenging problem.
To address this problem, it has been recently introduced a promising approach based on jointly embedding logical queries and KGs.
We propose a novel TypE-aware Message Passing (TEMP) model, which enhances the entity and relation representations in queries.
arXiv Detail & Related papers (2022-05-02T10:05:13Z) - Reasoning with Multi-Structure Commonsense Knowledge in Visual Dialog [12.034554338597067]
We propose a novel model by Reasoning with Multi-structure Commonsense Knowledge (RMK)
In our model, the external knowledge is represented with sentence-level facts and graph-level facts.
On top of these multi-structure representations, our model can capture relevant knowledge and incorporate them into the vision and semantic features.
arXiv Detail & Related papers (2022-04-10T13:12:10Z) - Understand me, if you refer to Aspect Knowledge: Knowledge-aware Gated
Recurrent Memory Network [54.735400754548635]
Aspect-level sentiment classification (ASC) aims to predict the fine-grained sentiment polarity towards a given aspect mentioned in a review.
Despite recent advances in ASC, enabling machines to preciously infer aspect sentiments is still challenging.
This paper tackles two challenges in ASC: (1) due to lack of aspect knowledge, aspect representation is inadequate to represent aspect's exact meaning and property information; (2) prior works only capture either local syntactic information or global relational information, thus missing either one of them leads to insufficient syntactic information.
arXiv Detail & Related papers (2021-08-05T03:39:30Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Once Upon A Time In Visualization: Understanding the Use of Textual
Narratives for Causality [21.67542584041709]
Causality visualization can help people understand temporal chains of events.
But as the scale and complexity of these event sequences grows, even these visualizations can become overwhelming to use.
We propose the use of textual narratives as a data-driven storytelling method to augment causality visualization.
arXiv Detail & Related papers (2020-09-06T05:46:24Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.