EventGround: Narrative Reasoning by Grounding to Eventuality-centric Knowledge Graphs
- URL: http://arxiv.org/abs/2404.00209v2
- Date: Sun, 7 Jul 2024 04:37:32 GMT
- Title: EventGround: Narrative Reasoning by Grounding to Eventuality-centric Knowledge Graphs
- Authors: Cheng Jiayang, Lin Qiu, Chunkit Chan, Xin Liu, Yangqiu Song, Zheng Zhang,
- Abstract summary: We propose an initial comprehensive framework called EventGround to tackle the problem of grounding free-texts to eventuality-centric knowledge graphs.
We provide simple yet effective parsing and partial information extraction methods to tackle these problems.
Our framework, incorporating grounded knowledge, achieves state-of-the-art performance while providing interpretable evidence.
- Score: 41.928535719157054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Narrative reasoning relies on the understanding of eventualities in story contexts, which requires a wealth of background world knowledge. To help machines leverage such knowledge, existing solutions can be categorized into two groups. Some focus on implicitly modeling eventuality knowledge by pretraining language models (LMs) with eventuality-aware objectives. However, this approach breaks down knowledge structures and lacks interpretability. Others explicitly collect world knowledge of eventualities into structured eventuality-centric knowledge graphs (KGs). However, existing research on leveraging these knowledge sources for free-texts is limited. In this work, we propose an initial comprehensive framework called EventGround, which aims to tackle the problem of grounding free-texts to eventuality-centric KGs for contextualized narrative reasoning. We identify two critical problems in this direction: the event representation and sparsity problems. We provide simple yet effective parsing and partial information extraction methods to tackle these problems. Experimental results demonstrate that our approach consistently outperforms baseline models when combined with graph neural network (GNN) or large language model (LLM) based graph reasoning models. Our framework, incorporating grounded knowledge, achieves state-of-the-art performance while providing interpretable evidence.
Related papers
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Detecting misinformation through Framing Theory: the Frame Element-based
Model [6.4618518529384765]
We focus on the nuanced manipulation of narrative frames - an under-explored area within the AI community.
We propose an innovative approach leveraging the power of pre-trained Large Language Models and deep neural networks to detect misinformation.
arXiv Detail & Related papers (2024-02-19T21:50:42Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models.
The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies.
We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
arXiv Detail & Related papers (2023-07-03T16:01:45Z) - VEM$^2$L: A Plug-and-play Framework for Fusing Text and Structure
Knowledge on Sparse Knowledge Graph Completion [14.537509860565706]
We propose a plug-and-play framework VEM2L over sparse Knowledge Graphs to fuse knowledge extracted from text and structure messages into a unity.
Specifically, we partition knowledge acquired by models into two nonoverlapping parts.
We also propose a new fusion strategy proved by Variational EM algorithm to fuse the generalization ability of models.
arXiv Detail & Related papers (2022-07-04T15:50:21Z) - Ontology-enhanced Prompt-tuning for Few-shot Learning [41.51144427728086]
Few-shot Learning is aimed to make predictions based on a limited number of samples.
Structured data such as knowledge graphs and ontology libraries has been leveraged to benefit the few-shot setting in various tasks.
arXiv Detail & Related papers (2022-01-27T05:41:36Z) - GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering [159.9645181522436]
GreaseLM is a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations.
We show that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
arXiv Detail & Related papers (2022-01-21T19:00:05Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - iReason: Multimodal Commonsense Reasoning using Videos and Natural
Language with Interpretability [0.0]
Causality knowledge is vital to building robust AI systems.
We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions.
arXiv Detail & Related papers (2021-06-25T02:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.