Benchmarks for quantum communication via gravity
- URL: http://arxiv.org/abs/2503.03585v1
- Date: Wed, 05 Mar 2025 15:21:31 GMT
- Title: Benchmarks for quantum communication via gravity
- Authors: Kristian Toccacelo, Ulrik Lund Andersen, Jonatan Bohr Brask,
- Abstract summary: We establish limitations and bounds on the transmission of quantum states between gravitationally interacting mechanical oscillators under different models of gravity.<n>This provides benchmarks that can enable tests for quantum features of gravity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish limitations and bounds on the transmission of quantum states between gravitationally interacting mechanical oscillators under different models of gravity. This provides benchmarks that can enable tests for quantum features of gravity. Our proposal does not require the measurement of gravitationally induced entanglement and only requires final measurements of a single subsystem. We discuss bounds for classical models based on local operations and classical communication when considering coherent-state alphabets, and we discuss the transfer of quantum squeezing for falsifying the Schr\"odinger-Newton model.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.<n>We show that no such simulation exists, thereby certifying quantum coherence.<n>Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Probing the Quantum Nature of Gravity through Classical Diffusion [0.0]
We show that if gravity is classical in the sense of being a local operation, it must necessarily introduce diffusion in the motion of quantum systems.
We outline an experimental protocol based on a high-precision torsion pendulum at millikelvin temperatures.
arXiv Detail & Related papers (2025-01-22T17:22:49Z) - Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.<n>We show that entangled quantum states dephase with a universal rate.<n>We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Relativistic Dips in Entangling Power of Gravity [0.0]
We show that quantum correlations can remain strongly suppressed for certain choices of parameters.
We find a pronounced cancellation point far from the Planck scale, where the system tends towards classicalization.
arXiv Detail & Related papers (2024-05-07T20:44:30Z) - Unveiling gravity's quantum fingerprint through gravitational waves [0.49157446832511503]
We introduce an innovative method to explore gravity's quantum aspects using a novel theoretical framework.
Our model delves into gravity-induced entanglement (GIE) while sidestepping classical communication limitations imposed by the LOCC principle.
arXiv Detail & Related papers (2024-03-17T16:06:44Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Coherence requirements for quantum communication from hybrid circuit
dynamics [29.004178992441336]
coherent superposition of quantum states is an important resource for quantum information processing.
We determine the coherence requirements to communicate quantum information in a broad setting encompassing monitored quantum dynamics and quantum error correction codes.
arXiv Detail & Related papers (2022-10-20T19:28:32Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Particle detectors as witnesses for quantum gravity [0.0]
We present a model for the coupling of non-relativistic quantum systems with a linearized gravitational field from a Lagrangian formulation.
We propose a detector based setup that can in principle probe the quantum nature of the gravitational field.
arXiv Detail & Related papers (2020-04-01T22:30:24Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.