Feature Matching Intervention: Leveraging Observational Data for Causal Representation Learning
- URL: http://arxiv.org/abs/2503.03634v1
- Date: Wed, 05 Mar 2025 16:14:43 GMT
- Title: Feature Matching Intervention: Leveraging Observational Data for Causal Representation Learning
- Authors: Haoze Li, Jun Xie,
- Abstract summary: Feature Matching Intervention (FMI) uses a matching procedure to mimic perfect interventions.<n>We define causal latent graphs, extending structural causal models to latent feature space.<n>Our feature matching procedure emulates perfect interventions within these causal latent graphs.
- Score: 25.30659475597803
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A major challenge in causal discovery from observational data is the absence of perfect interventions, making it difficult to distinguish causal features from spurious ones. We propose an innovative approach, Feature Matching Intervention (FMI), which uses a matching procedure to mimic perfect interventions. We define causal latent graphs, extending structural causal models to latent feature space, providing a framework that connects FMI with causal graph learning. Our feature matching procedure emulates perfect interventions within these causal latent graphs. Theoretical results demonstrate that FMI exhibits strong out-of-distribution (OOD) generalizability. Experiments further highlight FMI's superior performance in effectively identifying causal features solely from observational data.
Related papers
- Hallucination Detection in LLMs via Topological Divergence on Attention Graphs [64.74977204942199]
Hallucination, i.e., generating factually incorrect content, remains a critical challenge for large language models.
We introduce TOHA, a TOpology-based HAllucination detector in the RAG setting.
arXiv Detail & Related papers (2025-04-14T10:06:27Z) - Kernel-based estimators for functional causal effects [1.6749379740049928]
We propose causal effect estimators based on empirical Fr'echet means and operator-valued kernels, tailored to functional data spaces.
These methods address the challenges of high-dimensionality, sequential ordering, and model complexity while preserving robustness to treatment misspecification.
arXiv Detail & Related papers (2025-03-06T22:48:55Z) - Can Large Language Models Help Experimental Design for Causal Discovery? [94.66802142727883]
Large Language Model Guided Intervention Targeting (LeGIT) is a robust framework that effectively incorporates LLMs to augment existing numerical approaches for the intervention targeting in causal discovery.
LeGIT demonstrates significant improvements and robustness over existing methods and even surpasses humans.
arXiv Detail & Related papers (2025-03-03T03:43:05Z) - Causally-Aware Unsupervised Feature Selection Learning [15.20376149047008]
Unsupervised feature selection (UFS) has recently gained attention for its effectiveness in processing unlabeled high-dimensional data.<n>Previous graph-based methods fail to account for the differing impacts of non-causal and causal features in constructing the similarity graph.<n>A novel UFS method, called Causally-Aware UnSupErvised Feature Selection learning (CAUSE-FS), is proposed.
arXiv Detail & Related papers (2024-10-16T04:41:38Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery [49.084423861263524]
In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT.
GIT 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function.
We provide extensive experiments in simulated and real-world datasets and demonstrate that GIT performs on par with competitive baselines.
arXiv Detail & Related papers (2022-11-24T17:04:45Z) - A Meta-Reinforcement Learning Algorithm for Causal Discovery [3.4806267677524896]
Causal structures can enable models to go beyond pure correlation-based inference.
Finding causal structures from data poses a significant challenge both in computational effort and accuracy.
We develop a meta-reinforcement learning algorithm that performs causal discovery by learning to perform interventions.
arXiv Detail & Related papers (2022-07-18T09:26:07Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.