Causally Fair Node Classification on Non-IID Graph Data
- URL: http://arxiv.org/abs/2505.01652v1
- Date: Sat, 03 May 2025 02:05:51 GMT
- Title: Causally Fair Node Classification on Non-IID Graph Data
- Authors: Yucong Dai, Lu Zhang, Yaowei Hu, Susan Gauch, Yongkai Wu,
- Abstract summary: This paper addresses the prevalent challenge in fairness-aware ML algorithms.<n>We tackle the overlooked domain of non-IID, graph-based settings.<n>We develop the Message Passing Variational Autoencoder for Causal Inference.
- Score: 9.363036392218435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fair machine learning seeks to identify and mitigate biases in predictions against unfavorable populations characterized by demographic attributes, such as race and gender. Recently, a few works have extended fairness to graph data, such as social networks, but most of them neglect the causal relationships among data instances. This paper addresses the prevalent challenge in fairness-aware ML algorithms, which typically assume Independent and Identically Distributed (IID) data. We tackle the overlooked domain of non-IID, graph-based settings where data instances are interconnected, influencing the outcomes of fairness interventions. We base our research on the Network Structural Causal Model (NSCM) framework and posit two main assumptions: Decomposability and Graph Independence, which enable the computation of interventional distributions in non-IID settings using the $do$-calculus. Based on that, we develop the Message Passing Variational Autoencoder for Causal Inference (MPVA) to compute interventional distributions and facilitate causally fair node classification through estimated interventional distributions. Empirical evaluations on semi-synthetic and real-world datasets demonstrate that MPVA outperforms conventional methods by effectively approximating interventional distributions and mitigating bias. The implications of our findings underscore the potential of causality-based fairness in complex ML applications, setting the stage for further research into relaxing the initial assumptions to enhance model fairness.
Related papers
- Predictive Representativity: Uncovering Racial Bias in AI-based Skin Cancer Detection [0.0]
This paper introduces the concept of Predictive Representativity (PR)<n>PR shifts the focus from the composition of the data set to outcomes-level equity.<n>Our analysis reveals substantial performance disparities by skin phototype.
arXiv Detail & Related papers (2025-07-10T22:21:06Z) - Fair Deepfake Detectors Can Generalize [51.21167546843708]
We show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions.<n>Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals.<n>DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art
arXiv Detail & Related papers (2025-07-03T14:10:02Z) - Fair CoVariance Neural Networks [34.68621550644667]
We propose Fair coVariance Neural Networks (FVNNs), which perform graph convolutions on the covariance matrix for both fair and accurate predictions.<n>We prove that FVNNs are intrinsically fairer than analogous PCA approaches thanks to their stability in low sample regimes.
arXiv Detail & Related papers (2024-09-13T06:24:18Z) - Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
We show that datasets containing interventional data can be effectively extracted under realistic assumptions about the data distribution.
We introduce interventional faithfulness, which relies on comparisons between the marginal distributions of each variable across observational and interventional settings.
We also introduce Intersort, an algorithm designed to infer the causal order from datasets containing large numbers of single-variable interventions.
arXiv Detail & Related papers (2024-05-28T16:07:17Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
In computer vision, learning from long tailed datasets is a recurring theme, especially for natural image datasets.
Our proposal posits a meta-distributional scenario, where the data generating mechanism is invariant across the label-conditional feature distributions.
This allows us to leverage a causal data inflation procedure to enlarge the representation of minority classes.
arXiv Detail & Related papers (2020-11-25T00:13:11Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
We bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data.
We show that systematically induced correlations in the dataset are being learned and reflected in the latent representations.
We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.
arXiv Detail & Related papers (2020-06-14T12:47:34Z) - Identification Methods With Arbitrary Interventional Distributions as
Inputs [8.185725740857595]
Causal inference quantifies cause-effect relationships by estimating counterfactual parameters from data.
We use Single World Intervention Graphs and a nested factorization of models associated with mixed graphs to give a very simple view of existing identification theory for experimental data.
arXiv Detail & Related papers (2020-04-02T17:27:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.