BotUmc: An Uncertainty-Aware Twitter Bot Detection with Multi-view Causal Inference
- URL: http://arxiv.org/abs/2503.03775v1
- Date: Tue, 04 Mar 2025 13:39:31 GMT
- Title: BotUmc: An Uncertainty-Aware Twitter Bot Detection with Multi-view Causal Inference
- Authors: Tao Yang, Yang Hu, Feihong Lu, Ziwei Zhang, Qingyun Sun, Jianxin Li,
- Abstract summary: We propose an uncertainty-aware bot detection method to inform the confidence and use the uncertainty score to pick a high-confidence decision from multiple views of a social network under different environments.<n>Specifically, our proposed BotUmc uses LLM to extract information from tweets. Then, we construct a graph based on the extracted information, the original user information, and the user relationship and generate multiple views of the graph by causal interference. Lastly, an uncertainty loss is used to force the model to quantify the uncertainty of results and select the result with low uncertainty in one view as the final decision.
- Score: 30.448232690207387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social bots have become widely known by users of social platforms. To prevent social bots from spreading harmful speech, many novel bot detections are proposed. However, with the evolution of social bots, detection methods struggle to give high-confidence answers for samples. This motivates us to quantify the uncertainty of the outputs, informing the confidence of the results. Therefore, we propose an uncertainty-aware bot detection method to inform the confidence and use the uncertainty score to pick a high-confidence decision from multiple views of a social network under different environments. Specifically, our proposed BotUmc uses LLM to extract information from tweets. Then, we construct a graph based on the extracted information, the original user information, and the user relationship and generate multiple views of the graph by causal interference. Lastly, an uncertainty loss is used to force the model to quantify the uncertainty of results and select the result with low uncertainty in one view as the final decision. Extensive experiments show the superiority of our method.
Related papers
- Certainly Bot Or Not? Trustworthy Social Bot Detection via Robust Multi-Modal Neural Processes [28.951832771823128]
Social bot detection is crucial for mitigating misinformation, online manipulation, and coordinated inauthentic behavior.
Existing neural network-based detectors struggle with generalization due to distribution shifts across datasets.
We introduce a novel Uncertainty Estimation for Social Bot Detection framework, which quantifies the predictive uncertainty of detectors beyond mere classification.
arXiv Detail & Related papers (2025-03-11T01:32:52Z) - Entendre, a Social Bot Detection Tool for Niche, Fringe, and Extreme Social Media [1.4913052010438639]
We introduce Entendre, an open-access, scalable, and platform-agnostic bot detection framework.
We exploit the idea that most social platforms share a generic template, where users can post content, approve content, and provide a bio.
To demonstrate Entendre's effectiveness, we used it to explore the presence of bots among accounts posting racist content on the now-defunct right-wing platform Parler.
arXiv Detail & Related papers (2024-08-13T13:50:49Z) - Unmasking Social Bots: How Confident Are We? [41.94295877935867]
We propose to address both bot detection and the quantification of uncertainty at the account level.<n>This dual focus is crucial as it allows us to leverage additional information related to the quantified uncertainty of each prediction.<n>Specifically, our approach facilitates targeted interventions for bots when predictions are made with high confidence and suggests caution (e.g., gathering more data) when predictions are uncertain.
arXiv Detail & Related papers (2024-07-18T22:33:52Z) - SeBot: Structural Entropy Guided Multi-View Contrastive Learning for Social Bot Detection [34.68635583099056]
We propose SEBot, a novel multi-view graph-based contrastive learning-enabled social bot detector.
In particular, we use structural entropy as an uncertainty metric to optimize the entire graph's structure.
And we design an encoder to enable message passing beyond the homophily assumption.
arXiv Detail & Related papers (2024-05-18T08:16:11Z) - My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Social platforms such as Twitter are under siege from a multitude of fraudulent users.
Due to the structure of social networks, the majority of methods are based on the graph neural network(GNN), which is susceptible to attacks.
We propose a node injection-based adversarial attack method designed to deceive bot detection models.
arXiv Detail & Related papers (2023-10-11T03:09:48Z) - From Online Behaviours to Images: A Novel Approach to Social Bot
Detection [0.3867363075280544]
A particular type of social accounts is known to promote unreputable content, hyperpartisan, and propagandistic information.
We propose a novel approach to bot detection: we first propose a new algorithm that transforms the sequence of actions that an account performs into an image.
We compare our performances with state-of-the-art results for bot detection on genuine accounts / bot accounts datasets well known in the literature.
arXiv Detail & Related papers (2023-04-15T11:36:50Z) - ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference [54.17205151960878]
We introduce a sampling-free approach that is generic and easy to deploy.
We produce reliable uncertainty estimates on par with state-of-the-art methods at a significantly lower computational cost.
arXiv Detail & Related papers (2022-11-21T13:23:09Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
This paper focuses on the design of a novel system for identifying Twitter bots based on labeled Twitter data.
Supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions.
arXiv Detail & Related papers (2021-12-08T14:12:24Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
Estimating the uncertainty of a neural network plays a fundamental role in safety-critical settings.
In this work, we propose a novel sampling-free uncertainty estimation method for object detection.
We call it CertainNet, and it is the first to provide separate uncertainties for each output signal: objectness, class, location and size.
arXiv Detail & Related papers (2021-10-04T17:59:31Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
Malicious actors create inauthentic social media accounts controlled in part by algorithms, known as social bots, to disseminate misinformation and agitate online discussion.
We show that different types of bots are characterized by different behavioral features.
We propose a new supervised learning method that trains classifiers specialized for each class of bots and combines their decisions through the maximum rule.
arXiv Detail & Related papers (2020-06-11T22:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.