論文の概要: COARSE: Collaborative Pseudo-Labeling with Coarse Real Labels for Off-Road Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2503.03947v1
- Date: Wed, 05 Mar 2025 22:25:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:45.731758
- Title: COARSE: Collaborative Pseudo-Labeling with Coarse Real Labels for Off-Road Semantic Segmentation
- Title(参考訳): COARSE: オフロードセマンティックセマンティックセグメンテーションのための粗実ラベルを用いた協調擬似ラベル
- Authors: Aurelio Noca, Xianmei Lei, Jonathan Becktor, Jeffrey Edlund, Anna Sabel, Patrick Spieler, Curtis Padgett, Alexandre Alahi, Deegan Atha,
- Abstract要約: COARSEはオフロードセマンティックセグメンテーションのための半教師付きドメイン適応フレームワークである。
我々は、協調的な擬似ラベル戦略によって強化された、補完的なピクセルレベルとパッチレベルのデコーダでドメインギャップをブリッジする。
- 参考スコア(独自算出の注目度): 49.267650162344765
- License:
- Abstract: Autonomous off-road navigation faces challenges due to diverse, unstructured environments, requiring robust perception with both geometric and semantic understanding. However, scarce densely labeled semantic data limits generalization across domains. Simulated data helps, but introduces domain adaptation issues. We propose COARSE, a semi-supervised domain adaptation framework for off-road semantic segmentation, leveraging sparse, coarse in-domain labels and densely labeled out-of-domain data. Using pretrained vision transformers, we bridge domain gaps with complementary pixel-level and patch-level decoders, enhanced by a collaborative pseudo-labeling strategy on unlabeled data. Evaluations on RUGD and Rellis-3D datasets show significant improvements of 9.7\% and 8.4\% respectively, versus only using coarse data. Tests on real-world off-road vehicle data in a multi-biome setting further demonstrate COARSE's applicability.
- Abstract(参考訳): 自律的なオフロードナビゲーションは、多様で非構造的な環境のために困難に直面し、幾何学的および意味的理解の両方で堅牢な認識を必要とする。
しかし、厳密なラベル付きセマンティックデータはドメイン間の一般化を制限する。
シミュレーションされたデータは役に立ちますが、ドメイン適応の問題が導入されます。
オフロードセマンティックセグメンテーションのための半教師付きドメイン適応フレームワークであるCOARSEを提案する。
事前学習された視覚変換器を用いて,非ラベルデータ上での擬似ラベル化戦略によって強化された,補完的な画素レベルとパッチレベルのデコーダで領域ギャップを埋める。
RUGDとRellis-3Dデータセットの評価は、粗いデータのみを使用するよりも、それぞれ9.7\%と8.4\%の大幅な改善を示している。
実世界のオフロード車両データのマルチルーム環境でのテストは、COARSEの適用性をさらに証明している。
関連論文リスト
- AdaptDiff: Cross-Modality Domain Adaptation via Weak Conditional Semantic Diffusion for Retinal Vessel Segmentation [10.958821619282748]
本稿では、AdaptDiffという、教師なしドメイン適応(UDA)手法を提案する。
これにより、眼底撮影(FP)で訓練された網膜血管分割ネットワークが、目に見えないモダリティに対して満足な結果をもたらすことができる。
その結果,全データセットのセグメンテーション性能は大幅に向上した。
論文 参考訳(メタデータ) (2024-10-06T23:04:29Z) - Joint semi-supervised and contrastive learning enables domain generalization and multi-domain segmentation [1.5393913074555419]
SegCLRは、さまざまなドメインにまたがるイメージのセグメンテーション用に設計された汎用的なフレームワークです。
SegCLRは、ラベル付きデータとラベルなしデータの両方から効果的に学習するために、教師付き学習とコントラスト付き学習を同時に使用する。
3つの多様な臨床データセットを包括的に評価することで、SegCLRの優れた性能を実証する。
論文 参考訳(メタデータ) (2024-05-08T18:10:59Z) - Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
分類領域アライメントを実現するために,G-ABC (Adaptive Betweenness Clustering) と呼ばれる新しいSSDA手法を提案する。
提案手法は従来のSSDA手法よりも優れており,提案したG-ABCアルゴリズムの優位性を示している。
論文 参考訳(メタデータ) (2024-01-21T09:57:56Z) - QuadFormer: Quadruple Transformer for Unsupervised Domain Adaptation in
Power Line Segmentation of Aerial Images [12.840195641761323]
ドメイン適応型セマンティックセグメンテーションのための新しいフレームワークを提案する。
階層的な四重変圧器は、伝達可能なコンテキストに適応するために、クロスアテンションと自己アテンションのメカニズムを組み合わせる。
ARPLSynとARPLRealの2つのデータセットを提示し、教師なし領域適応電力線分割の研究をさらに進める。
論文 参考訳(メタデータ) (2022-11-29T03:15:27Z) - Unsupervised Contrastive Domain Adaptation for Semantic Segmentation [75.37470873764855]
クロスドメイン適応における特徴アライメントのためのコントラスト学習を導入する。
提案手法は、ドメイン適応のための最先端手法を一貫して上回る。
Cityscapesデータセットで60.2% mIoUを達成した。
論文 参考訳(メタデータ) (2022-04-18T16:50:46Z) - Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with
Self-Supervised Depth Estimation [94.16816278191477]
本稿では,セミアダプティブなセマンティックセマンティックセマンティックセグメンテーションのためのフレームワークを提案する。
ラベルのない画像シーケンスでのみ訓練された自己教師付き単眼深度推定によって強化される。
提案したモデルをCityscapesデータセット上で検証する。
論文 参考訳(メタデータ) (2021-08-28T01:33:38Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDAはラベル付きソースドメインからラベルなしターゲットドメインへの効率的な知識伝達を試みている。
本稿では,領域にまたがるカテゴリ別センタロイドを適応させるコントラスト学習手法を提案する。
提案手法を自己学習で拡張し,メモリ効率の良い時間アンサンブルを用いて一貫性と信頼性の高い擬似ラベルを生成する。
論文 参考訳(メタデータ) (2021-05-05T11:55:53Z) - DACS: Domain Adaptation via Cross-domain Mixed Sampling [4.205692673448206]
教師なしのドメイン適応は、あるドメインからラベル付きデータをトレーニングし、同時に関心のあるドメインでラベルなしのデータから学習しようとする。
DACS: クロスドメイン混合サンプリングによるドメイン適応(Domain Adaptation)を提案する。
我々は,GTA5からCityscapesへの最先端の成果を得ることによって,ソリューションの有効性を実証する。
論文 参考訳(メタデータ) (2020-07-17T00:43:11Z) - Synthetic-to-Real Domain Adaptation for Lane Detection [5.811502603310248]
我々は、ラベルなしまたは部分的にラベル付けされたターゲットドメインデータとともに、豊富でランダムに生成された合成データからの学習を探索する。
これは、非現実的な合成領域で学んだモデルを実画像に適応させることの難しさを浮き彫りにする。
対象のドメインデータに適応するために、特定の画像と一致しない合成ラベルを用いる、新しいオートエンコーダベースのアプローチを開発する。
論文 参考訳(メタデータ) (2020-07-08T10:54:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。