Unseen Fake News Detection Through Casual Debiasing
- URL: http://arxiv.org/abs/2503.04160v1
- Date: Thu, 06 Mar 2025 07:23:44 GMT
- Title: Unseen Fake News Detection Through Casual Debiasing
- Authors: Shuzhi Gong, Richard Sinnott, Jianzhong Qi, Cecile Paris,
- Abstract summary: Existing methods struggle with unseen news due to their reliance on training data from past events and domains.<n>We propose a debiasing solution FNDCD, which employs a reweighting strategy based on classification confidence and propagation structure regularization.<n>Experiments on real-world datasets with non-overlapping news domains demonstrate FNDCD's effectiveness in improving generalization across domains.
- Score: 10.711567616912312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread dissemination of fake news on social media poses significant risks, necessitating timely and accurate detection. However, existing methods struggle with unseen news due to their reliance on training data from past events and domains, leaving the challenge of detecting novel fake news largely unresolved. To address this, we identify biases in training data tied to specific domains and propose a debiasing solution FNDCD. Originating from causal analysis, FNDCD employs a reweighting strategy based on classification confidence and propagation structure regularization to reduce the influence of domain-specific biases, enhancing the detection of unseen fake news. Experiments on real-world datasets with non-overlapping news domains demonstrate FNDCD's effectiveness in improving generalization across domains.
Related papers
- Less is More: Unseen Domain Fake News Detection via Causal Propagation Substructures [13.80520305397377]
This paper introduces the Causal Subgraph-oriented Domain Adaptive Fake News Detection model.
It is designed to enhance zero-shot fake news detection by extracting causal substructures from propagation graphs.
It achieves a 7 to 16 percents accuracy improvement over other state-of-the-art models.
arXiv Detail & Related papers (2024-11-14T12:05:35Z) - Detect, Investigate, Judge and Determine: A Knowledge-guided Framework for Few-shot Fake News Detection [50.079690200471454]
Few-Shot Fake News Detection (FS-FND) aims to distinguish inaccurate news from real ones in extremely low-resource scenarios.<n>This task has garnered increased attention due to the widespread dissemination and harmful impact of fake news on social media.<n>We propose a Dual-perspective Knowledge-guided Fake News Detection (DKFND) model, designed to enhance LLMs from both inside and outside perspectives.
arXiv Detail & Related papers (2024-07-12T03:15:01Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
"Prompt-and-Align" (P&A) is a novel prompt-based paradigm for few-shot fake news detection.
We show that P&A sets new states-of-the-art for few-shot fake news detection performance by significant margins.
arXiv Detail & Related papers (2023-09-28T13:19:43Z) - Unsupervised Domain-agnostic Fake News Detection using Multi-modal Weak
Signals [19.22829945777267]
This work proposes an effective framework for unsupervised fake news detection, which first embeds the knowledge available in four modalities in news records.
Also, we propose a novel technique to construct news datasets minimizing the latent biases in existing news datasets.
We trained the proposed unsupervised framework using LUND-COVID to exploit the potential of large datasets.
arXiv Detail & Related papers (2023-05-18T23:49:31Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Domain Adaptive Fake News Detection via Reinforcement Learning [34.95213747705498]
We introduce a novel reinforcement learning-based model called REAL-FND to detect fake news.
Experiments on real-world datasets illustrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-02-16T16:05:37Z) - A Systematic Review on the Detection of Fake News Articles [0.0]
It has been argued that fake news and the spread of false information pose a threat to societies throughout the world.
To combat this threat, a number of Natural Language Processing (NLP) approaches have been developed.
This paper aims to delineate the approaches for fake news detection that are most performant, identify limitations with existing approaches, and suggest ways these can be mitigated.
arXiv Detail & Related papers (2021-10-18T21:29:11Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - An Event Correlation Filtering Method for Fake News Detection [0.0]
Existing deep learning models have achieved great progress to tackle the problem of fake news detection.
To improve the detection performance of fake news, we take advantage of the event correlations of news.
ECFM is proposed to integrate them to detect fake news in an event correlation filtering manner.
arXiv Detail & Related papers (2020-12-10T07:31:07Z) - A Deep Learning Approach for Automatic Detection of Fake News [47.00462375817434]
We propose two models based on deep learning for solving fake news detection problem in online news contents of multiple domains.
We evaluate our techniques on the two recently released datasets, namely FakeNews AMT and Celebrity for fake news detection.
arXiv Detail & Related papers (2020-05-11T09:07:46Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
Social media has greatly enabled people to participate in online activities at an unprecedented rate.
This unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation.
We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances.
Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.
arXiv Detail & Related papers (2020-04-03T18:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.