論文の概要: FUSE: First-Order and Second-Order Unified SynthEsis in Stochastic Optimization
- arxiv url: http://arxiv.org/abs/2503.04204v1
- Date: Thu, 06 Mar 2025 08:30:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:54.867972
- Title: FUSE: First-Order and Second-Order Unified SynthEsis in Stochastic Optimization
- Title(参考訳): FUSE:確率最適化における一階と二階の統一合成
- Authors: Zhanhong Jiang, Md Zahid Hasan, Aditya Balu, Joshua R. Waite, Genyi Huang, Soumik Sarkar,
- Abstract要約: 一階法と二階法は全く異なる状況にある。
本稿では,一階法と二階法の両方を統一的なアルゴリズムフレームワークで活用する新しい手法を提案する。
FUSE-PVは、第1次と第2次を切り替える単純な最適化手法である。
- 参考スコア(独自算出の注目度): 9.909119107223265
- License:
- Abstract: Stochastic optimization methods have actively been playing a critical role in modern machine learning algorithms to deliver decent performance. While numerous works have proposed and developed diverse approaches, first-order and second-order methods are in entirely different situations. The former is significantly pivotal and dominating in emerging deep learning but only leads convergence to a stationary point. However, second-order methods are less popular due to their computational intensity in large-dimensional problems. This paper presents a novel method that leverages both the first-order and second-order methods in a unified algorithmic framework, termed FUSE, from which a practical version (PV) is derived accordingly. FUSE-PV stands as a simple yet efficient optimization method involving a switch-over between first and second orders. Additionally, we develop different criteria that determine when to switch. FUSE-PV has provably shown a smaller computational complexity than SGD and Adam. To validate our proposed scheme, we present an ablation study on several simple test functions and show a comparison with baselines for benchmark datasets.
- Abstract(参考訳): 確率的最適化手法は、優れたパフォーマンスを実現するために、現代の機械学習アルゴリズムにおいて、積極的に重要な役割を果たしている。
多くの研究が様々なアプローチを提案し、開発してきたが、一階法と二階法は全く異なる状況にある。
前者は先進的な深層学習において著しく中心的であり、支配的だが、収束は静止点に限られる。
しかし、大規模問題における計算強度のため、二階法は一般的ではない。
本稿では,一階法と二階法の両方を統一型アルゴリズムフレームワークFUSEで利用し,実用版(PV)を導出する手法を提案する。
FUSE-PVは、第1次と第2次を切り替える単純な最適化手法である。
さらに、切り替えるタイミングを決定する異なる基準も開発します。
FUSE-PVはSGDやAdamよりも計算の複雑さが小さいことを証明している。
提案手法を検証するために,いくつかの簡単なテスト関数のアブレーション実験を行い,ベンチマークデータセットのベースラインとの比較を行った。
関連論文リスト
- Online Learning Under A Separable Stochastic Approximation Framework [20.26530917721778]
分離可能な近似フレームワークを用いて,機械学習モデルのクラスに対するオンライン学習アルゴリズムを提案する。
提案アルゴリズムは,他の一般的な学習アルゴリズムと比較して,より堅牢でテスト性能が高いことを示す。
論文 参考訳(メタデータ) (2023-05-12T13:53:03Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
最適化プログラミング(SP)、最適制御(SOC)、決定プロセス(MDP)に焦点を当てる。
凸多段マルコフ問題の解決の最近の進歩は、動的プログラミング方程式のコスト対ゴー関数の切断面近似に基づいている。
切削平面型法は多段階問題を多段階的に扱えるが、状態(決定)変数は比較的少ない。
論文 参考訳(メタデータ) (2023-03-28T01:30:40Z) - BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach [46.457298683984924]
バイレベル最適化(BO)は、さまざまな機械学習問題を解決するのに有用である。
従来の手法では、暗黙の微分を伴う低レベル最適化プロセスを通じて差別化する必要がある。
一階BOは一階情報にのみ依存し、暗黙の微分を必要としない。
論文 参考訳(メタデータ) (2022-09-19T01:51:12Z) - Adaptive First- and Second-Order Algorithms for Large-Scale Machine
Learning [3.0204520109309843]
機械学習における連続最適化問題に対処する一階法と二階法を考察する。
一階述語の場合、半決定論的から二次正規化への遷移の枠組みを提案する。
本稿では,適応的なサンプリングと適応的なステップサイズを持つ新しい1次アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-11-29T18:10:00Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Second-order Neural Network Training Using Complex-step Directional
Derivative [41.4333906662624]
本稿では,2次ニューラルネットワークトレーニングのための数値アルゴリズムを提案する。
複素ステップ有限差分を用いてヘッセン計算の実践的障害に取り組む。
提案手法は,ディープラーニングと数値最適化のための新しいアルゴリズムを広範囲に導入すると考えられる。
論文 参考訳(メタデータ) (2020-09-15T13:46:57Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。