Explainable AI in Time-Sensitive Scenarios: Prefetched Offline Explanation Model
- URL: http://arxiv.org/abs/2503.04283v1
- Date: Thu, 06 Mar 2025 10:09:20 GMT
- Title: Explainable AI in Time-Sensitive Scenarios: Prefetched Offline Explanation Model
- Authors: Fabio Michele Russo, Carlo Metta, Anna Monreale, Salvatore Rinzivillo, Fabio Pinelli,
- Abstract summary: Poem is a model-agnostic, local explainability algorithm for image data.<n>It generates exemplars, counterexemplars and saliency maps to provide quick and effective explanations.<n>It outperforms its predecessor Abele in speed and ability to generate more nuanced and varied exemplars.
- Score: 4.182645056052712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As predictive machine learning models become increasingly adopted and advanced, their role has evolved from merely predicting outcomes to actively shaping them. This evolution has underscored the importance of Trustworthy AI, highlighting the necessity to extend our focus beyond mere accuracy and toward a comprehensive understanding of these models' behaviors within the specific contexts of their applications. To further progress in explainability, we introduce Poem, Prefetched Offline Explanation Model, a model-agnostic, local explainability algorithm for image data. The algorithm generates exemplars, counterexemplars and saliency maps to provide quick and effective explanations suitable for time-sensitive scenarios. Leveraging an existing local algorithm, \poem{} infers factual and counterfactual rules from data to create illustrative examples and opposite scenarios with an enhanced stability by design. A novel mechanism then matches incoming test points with an explanation base and produces diverse exemplars, informative saliency maps and believable counterexemplars. Experimental results indicate that Poem outperforms its predecessor Abele in speed and ability to generate more nuanced and varied exemplars alongside more insightful saliency maps and valuable counterexemplars.
Related papers
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Counterfactual Explanations for Deep Learning-Based Traffic Forecasting [42.31238891397725]
This study aims to leverage an Explainable AI approach, counterfactual explanations, to enhance the explainability and usability of deep learning-based traffic forecasting models.
The study first implements a deep learning model to predict traffic speed based on historical traffic data and contextual variables.
Counterfactual explanations are then used to illuminate how alterations in these input variables affect predicted outcomes.
arXiv Detail & Related papers (2024-05-01T11:26:31Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - On the Consistency and Robustness of Saliency Explanations for Time
Series Classification [4.062872727927056]
Saliency maps have been applied to interpret time series windows as images.
This paper extensively analyzes the consistency and robustness of saliency maps for time series features and temporal attribution.
arXiv Detail & Related papers (2023-09-04T09:08:22Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Robust Ante-hoc Graph Explainer using Bilevel Optimization [0.7999703756441758]
We propose RAGE, a novel and flexible ante-hoc explainer for graph neural networks.
RAGE can effectively identify molecular substructures that contain the full information needed for prediction.
Our experiments on various molecular classification tasks show that RAGE explanations are better than existing post-hoc and ante-hoc approaches.
arXiv Detail & Related papers (2023-05-25T05:50:38Z) - Parallel Sentence-Level Explanation Generation for Real-World
Low-Resource Scenarios [18.5713713816771]
This paper is the first to explore the problem smoothly from weak-supervised learning to unsupervised learning.
We propose a non-autoregressive interpretable model to facilitate parallel explanation generation and simultaneous prediction.
arXiv Detail & Related papers (2023-02-21T14:52:21Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.