論文の概要: Mapping AI Benchmark Data to Quantitative Risk Estimates Through Expert Elicitation
- arxiv url: http://arxiv.org/abs/2503.04299v1
- Date: Thu, 06 Mar 2025 10:39:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:59:56.298718
- Title: Mapping AI Benchmark Data to Quantitative Risk Estimates Through Expert Elicitation
- Title(参考訳): 専門家の引用を通してAIベンチマークデータを定量的リスク推定にマッピングする
- Authors: Malcolm Murray, Henry Papadatos, Otter Quarks, Pierre-François Gimenez, Simeon Campos,
- Abstract要約: 我々は、リスク見積の作成を容易にするために、既存のAIベンチマークをどのように利用できるかを示す。
本稿では、AIベンチマークであるCybenchからの情報を用いて確率推定を生成するパイロット研究の結果について述べる。
- 参考スコア(独自算出の注目度): 0.7889270818022226
- License:
- Abstract: The literature and multiple experts point to many potential risks from large language models (LLMs), but there are still very few direct measurements of the actual harms posed. AI risk assessment has so far focused on measuring the models' capabilities, but the capabilities of models are only indicators of risk, not measures of risk. Better modeling and quantification of AI risk scenarios can help bridge this disconnect and link the capabilities of LLMs to tangible real-world harm. This paper makes an early contribution to this field by demonstrating how existing AI benchmarks can be used to facilitate the creation of risk estimates. We describe the results of a pilot study in which experts use information from Cybench, an AI benchmark, to generate probability estimates. We show that the methodology seems promising for this purpose, while noting improvements that can be made to further strengthen its application in quantitative AI risk assessment.
- Abstract(参考訳): 文献と複数の専門家は、大きな言語モデル(LLM)による潜在的なリスクを指摘しているが、実際の害の直接的な測定は、まだごくわずかである。
AIのリスクアセスメントは、これまでのところモデルの能力の測定に重点を置いていますが、モデルの能力はリスクの指標であって、リスクの尺度ではありません。
AIリスクシナリオのモデリングと定量化の改善は、この切断を橋渡しし、LLMの能力を具体的な現実世界の害と結びつけるのに役立つ。
本稿では,既存のAIベンチマークがリスク推定の作成にどのように利用されているかを示すことによって,この分野に早期に貢献する。
本稿では、AIベンチマークであるCybenchからの情報を用いて確率推定を生成するパイロット研究の結果について述べる。
この方法論は,定量的AIリスクアセスメントにおける応用をさらに強化するための改善を図りながら,この目的に有望であるように見える。
関連論文リスト
- Statistical Scenario Modelling and Lookalike Distributions for Multi-Variate AI Risk [0.6526824510982799]
シナリオモデリングがAIリスクを全体論的にモデル化する方法について説明する。
直接観測可能なデータがない場合にAIの影響を推定するために、AIに類似した現象からの見た目上の分布がどのように使用できるかを示す。
論文 参考訳(メタデータ) (2025-02-20T12:14:54Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - GUARD-D-LLM: An LLM-Based Risk Assessment Engine for the Downstream uses of LLMs [0.0]
本稿では,大規模言語モデル(LLM)の下流から発生するリスクについて検討する。
テキストベースのユーザ入力から派生した特定のユースケースに関連する脅威を特定し、ランク付けする新しいLCMベースのリスクアセスメントエンジン(GUARD-D-LLM)を導入する。
30の知的エージェントを統合することで、この革新的なアプローチは、悪夢のリスクを特定し、その重症度を測定し、緩和のためのターゲットとなる提案を提供し、リスク認識開発を促進する。
論文 参考訳(メタデータ) (2024-04-02T05:25:17Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
本稿では,安全な配置を理論的に保証する新たなリスク認識型対実学習ランク法を提案する。
提案手法の有効性を実験的に検証し,データが少ない場合の動作不良の早期回避に有効であることを示す。
論文 参考訳(メタデータ) (2023-04-26T15:54:23Z) - Selecting Models based on the Risk of Damage Caused by Adversarial
Attacks [2.969705152497174]
規制、法的責任、社会的懸念は、安全およびセキュリティクリティカルなアプリケーションにおけるAIの採用に挑戦する。
重要な懸念の1つは、敵が検出されずにモデル予測を操作することで害を引き起こす可能性があることである。
本稿では,敵攻撃による被害の確率をモデル化し,統計的に推定する手法を提案する。
論文 参考訳(メタデータ) (2023-01-28T10:24:38Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [7.35411010153049]
リスクを減らす最善の方法は、包括的なAIライフサイクルガバナンスを実装することです。
リスクは技術コミュニティのメトリクスを使って定量化できます。
本稿では,このようなアプローチの機会,課題,潜在的影響に焦点をあてて,これらの課題について考察する。
論文 参考訳(メタデータ) (2022-09-13T21:47:25Z) - Detecting and Mitigating Test-time Failure Risks via Model-agnostic
Uncertainty Learning [30.86992077157326]
本稿では,すでに訓練済みのブラックボックス分類モデルの失敗リスクと予測的不確かさを推定するための,ポストホックメタラーナーであるリスクアドバイザを紹介する。
リスクアドバイザは、リスクスコアの提供に加えて、不確実性見積を、アレタリックおよびエピステマティックな不確実性コンポーネントに分解する。
ブラックボックス分類モデルおよび実世界および合成データセットのさまざまなファミリーの実験は、リスクアドバイザーがデプロイメント時の障害リスクを確実に予測していることを示している。
論文 参考訳(メタデータ) (2021-09-09T17:23:31Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。