Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks
- URL: http://arxiv.org/abs/2503.04308v1
- Date: Thu, 06 Mar 2025 10:51:04 GMT
- Title: Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks
- Authors: Lukáš Gajdošech, Hassan Ali, Jan-Gerrit Habekost, Martin Madaras, Matthias Kerzel, Stefan Wermter,
- Abstract summary: We provide a novel real-world glass object dataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform.<n>We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches.
- Score: 15.02995441433222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue to robotic applications that suffer from accumulating errors between detection, planning, and action execution. The paper introduces a novel method for the acquisition of real-world data from RGB-D sensors that minimizes human effort. We propose an auto-labeling pipeline that generates labels for all the acquired frames based on the depth measurements. We provide a novel real-world glass object dataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform. The data set consists of 7850 images recorded from five different cameras. We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches. In addition, we deploy our baseline model in an embodied agent approach to the NICOL platform, on which it achieves a success rate of 81% in a human-robot bartending scenario.
Related papers
- PickScan: Object discovery and reconstruction from handheld interactions [99.99566882133179]
We develop an interaction-guided and class-agnostic method to reconstruct 3D representations of scenes.
Our main contribution is a novel approach to detecting user-object interactions and extracting the masks of manipulated objects.
Compared to Co-Fusion, the only comparable interaction-based and class-agnostic baseline, this corresponds to a reduction in chamfer distance of 73%.
arXiv Detail & Related papers (2024-11-17T23:09:08Z) - OptiGrasp: Optimized Grasp Pose Detection Using RGB Images for Warehouse Picking Robots [27.586777997464644]
In warehouse environments, robots require robust picking capabilities to manage a wide variety of objects.
We propose an innovative approach that leverages foundation models to enhance suction grasping using only RGB images.
Our network achieves an 82.3% success rate in real-world applications.
arXiv Detail & Related papers (2024-09-29T00:20:52Z) - Robot See Robot Do: Imitating Articulated Object Manipulation with Monocular 4D Reconstruction [51.49400490437258]
This work develops a method for imitating articulated object manipulation from a single monocular RGB human demonstration.
We first propose 4D Differentiable Part Models (4D-DPM), a method for recovering 3D part motion from a monocular video.
Given this 4D reconstruction, the robot replicates object trajectories by planning bimanual arm motions that induce the demonstrated object part motion.
We evaluate 4D-DPM's 3D tracking accuracy on ground truth annotated 3D part trajectories and RSRD's physical execution performance on 9 objects across 10 trials each on a bimanual YuMi robot.
arXiv Detail & Related papers (2024-09-26T17:57:16Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - Multimodal Anomaly Detection based on Deep Auto-Encoder for Object Slip
Perception of Mobile Manipulation Robots [22.63980025871784]
The proposed framework integrates heterogeneous data streams collected from various robot sensors, including RGB and depth cameras, a microphone, and a force-torque sensor.
The integrated data is used to train a deep autoencoder to construct latent representations of the multisensory data that indicate the normal status.
Anomalies can then be identified by error scores measured by the difference between the trained encoder's latent values and the latent values of reconstructed input data.
arXiv Detail & Related papers (2024-03-06T09:15:53Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments.
At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images.
We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration.
arXiv Detail & Related papers (2021-04-12T23:14:41Z) - Few-Shot Visual Grounding for Natural Human-Robot Interaction [0.0]
We propose a software architecture that segments a target object from a crowded scene, indicated verbally by a human user.
At the core of our system, we employ a multi-modal deep neural network for visual grounding.
We evaluate the performance of the proposed model on real RGB-D data collected from public scene datasets.
arXiv Detail & Related papers (2021-03-17T15:24:02Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
We propose the use of a Convolution Neural Network (CNN) to segment the robot hand from an image in an egocentric view.
We fine-tuned the Mask-RCNN network for the specific task of segmenting the hand of the humanoid robot Vizzy.
arXiv Detail & Related papers (2021-02-09T10:34:32Z) - Rapid Pose Label Generation through Sparse Representation of Unknown
Objects [7.32172860877574]
This work presents an approach for rapidly generating real-world, pose-annotated RGB-D data for unknown objects.
We first source minimalistic labelings of an ordered set of arbitrarily chosen keypoints over a set of RGB-D videos.
By solving an optimization problem, we combine these labels under a world frame to recover a sparse, keypoint-based representation of the object.
arXiv Detail & Related papers (2020-11-07T15:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.