Provable Robust Overfitting Mitigation in Wasserstein Distributionally Robust Optimization
- URL: http://arxiv.org/abs/2503.04315v1
- Date: Thu, 06 Mar 2025 10:58:35 GMT
- Title: Provable Robust Overfitting Mitigation in Wasserstein Distributionally Robust Optimization
- Authors: Shuang Liu, Yihan Wang, Yifan Zhu, Yibo Miao, Xiao-Shan Gao,
- Abstract summary: We propose a novel robust optimization framework under a new uncertainty set for adversarial noise via Wasserstein distance and statistical error.<n>We demonstrate that our method significantly mitigates robust overfitting and enhances robustness within the framework of WDRO.
- Score: 23.17991102874279
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wasserstein distributionally robust optimization (WDRO) optimizes against worst-case distributional shifts within a specified uncertainty set, leading to enhanced generalization on unseen adversarial examples, compared to standard adversarial training which focuses on pointwise adversarial perturbations. However, WDRO still suffers fundamentally from the robust overfitting problem, as it does not consider statistical error. We address this gap by proposing a novel robust optimization framework under a new uncertainty set for adversarial noise via Wasserstein distance and statistical error via Kullback-Leibler divergence, called the Statistically Robust WDRO. We establish a robust generalization bound for the new optimization framework, implying that out-of-distribution adversarial performance is at least as good as the statistically robust training loss with high probability. Furthermore, we derive conditions under which Stackelberg and Nash equilibria exist between the learner and the adversary, giving an optimal robust model in certain sense. Finally, through extensive experiments, we demonstrate that our method significantly mitigates robust overfitting and enhances robustness within the framework of WDRO.
Related papers
- Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls [8.720733751119994]
Adversarially robust optimization (ARO) has become the de facto standard for training models to defend against adversarial attacks during testing.
Despite their robustness, these models often suffer from severe overfitting.
We propose two approaches to replace the empirical distribution in training with: (i) a worst-case distribution within an ambiguity set; or (ii) a mixture of the empirical distribution with one derived from an auxiliary dataset.
arXiv Detail & Related papers (2024-07-18T15:59:37Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2023-07-25T01:56:57Z) - Model-Free Robust Average-Reward Reinforcement Learning [25.125481838479256]
We focus on the robust average-reward MDPs under the model-free iteration setting.
We design two model-free algorithms, robust relative value (RVI) TD and robust RVI Q-learning, and theoretically prove their convergence to the optimal solution.
arXiv Detail & Related papers (2023-05-17T18:19:23Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2022-10-14T07:39:13Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
The trade-off between robustness and accuracy has been widely studied in the adversarial literature.
We find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance.
By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty.
arXiv Detail & Related papers (2022-02-21T10:36:09Z) - Probabilistically Robust Learning: Balancing Average- and Worst-case
Performance [105.87195436925722]
We propose a framework called robustness probabilistic that bridges the gap between the accurate, yet brittle average case and the robust, yet conservative worst case.
From a theoretical point of view, this framework overcomes the trade-offs between the performance and the sample-complexity of worst-case and average-case learning.
arXiv Detail & Related papers (2022-02-02T17:01:38Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z) - Distributionally Robust Bayesian Optimization [121.71766171427433]
We present a novel distributionally robust Bayesian optimization algorithm (DRBO) for zeroth-order, noisy optimization.
Our algorithm provably obtains sub-linear robust regret in various settings.
We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.
arXiv Detail & Related papers (2020-02-20T22:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.