論文の概要: Large Language Models for Zero-shot Inference of Causal Structures in Biology
- arxiv url: http://arxiv.org/abs/2503.04347v1
- Date: Thu, 06 Mar 2025 11:43:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:57:43.143067
- Title: Large Language Models for Zero-shot Inference of Causal Structures in Biology
- Title(参考訳): 生物学における因果構造のゼロショット推論のための大規模言語モデル
- Authors: Izzy Newsham, Luka Kovačević, Richard Moulange, Nan Rosemary Ke, Sach Mukherjee,
- Abstract要約: 本稿では,生物学における因果関係のゼロショット推論のための大規模言語モデル(LLM)を評価する枠組みを提案する。
実世界の介入データを用いて, LLMから得られた因果関係を系統的に評価した。
以上の結果から, 比較的小さなLLMでも生物学的システムにおける因果構造の意義を捉えることが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 4.650342334505084
- License:
- Abstract: Genes, proteins and other biological entities influence one another via causal molecular networks. Causal relationships in such networks are mediated by complex and diverse mechanisms, through latent variables, and are often specific to cellular context. It remains challenging to characterise such networks in practice. Here, we present a novel framework to evaluate large language models (LLMs) for zero-shot inference of causal relationships in biology. In particular, we systematically evaluate causal claims obtained from an LLM using real-world interventional data. This is done over one hundred variables and thousands of causal hypotheses. Furthermore, we consider several prompting and retrieval-augmentation strategies, including large, and potentially conflicting, collections of scientific articles. Our results show that with tailored augmentation and prompting, even relatively small LLMs can capture meaningful aspects of causal structure in biological systems. This supports the notion that LLMs could act as orchestration tools in biological discovery, by helping to distil current knowledge in ways amenable to downstream analysis. Our approach to assessing LLMs with respect to experimental data is relevant for a broad range of problems at the intersection of causal learning, LLMs and scientific discovery.
- Abstract(参考訳): 遺伝子、タンパク質、その他の生物学的実体は因果分子ネットワークを介して互いに影響する。
このようなネットワークにおける因果関係は、潜伏変数を通じて複雑で多様なメカニズムによって媒介され、しばしば細胞コンテキストに特有のものである。
このようなネットワークを実際に特徴付けることは依然として困難である。
本稿では,生物学における因果関係のゼロショット推論のための大規模言語モデル(LLM)を評価するための新しい枠組みを提案する。
特に,実世界の介入データを用いてLLMから得られた因果関係を系統的に評価した。
これは100の変数と数千の因果仮説にまたがる。
さらに,大規模かつ潜在的に矛盾する科学論文の収集を含む,いくつかのプロンプトおよび検索強化戦略について考察する。
以上の結果から, 比較的小さなLDMでも, 生体系における因果構造の意義を把握できることが示唆された。
このことは、LLMが生物学的発見においてオーケストレーションツールとして機能し、下流分析に使える方法で現在の知識を消し去るのに役立つ、という考えを支持している。
実験データに対する LLM の評価手法は, 因果学習, LLM, 科学的発見の共通点において, 幅広い問題に関係している。
関連論文リスト
- Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
本稿では,生物配列関連命令チューニングデータセットであるBiology-Instructionsを紹介する。
このデータセットは、大きな言語モデル(LLM)と複雑な生物学的シーケンスに関連するタスクのギャップを埋めることができます。
また、新たな3段階トレーニングパイプラインを備えたChatMultiOmicsという強力なベースラインも開発しています。
論文 参考訳(メタデータ) (2024-12-26T12:12:23Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
本研究では,因果発見タスクにおけるLarge Language Models(LLM)の性能に影響を与える要因について検討する。
因果関係の頻度が高いことは、より良いモデル性能と相関し、トレーニング中に因果関係の情報に広範囲に暴露することで、因果関係の発見能力を高めることを示唆している。
論文 参考訳(メタデータ) (2024-07-29T01:45:05Z) - ALCM: Autonomous LLM-Augmented Causal Discovery Framework [2.1470800327528843]
我々は、データ駆動因果探索アルゴリズムと大規模言語モデルとを相乗化するために、ALCM(Autonomous LLM-Augmented Causal Discovery Framework)という新しいフレームワークを導入する。
ALCMは、因果構造学習(英語版)、因果ラッパー(英語版)、LLM駆動因果リファクター(英語版)の3つの統合的な構成要素から構成される。
我々は、よく知られた7つのデータセットに2つのデモを実装することで、ALCMフレームワークを評価する。
論文 参考訳(メタデータ) (2024-05-02T21:27:45Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
本研究では,大規模言語モデル(LLM)の性能について,バイオインフォマティクスの幅広い課題について検討する。
これらのタスクには、潜在的なコーディング領域の同定、遺伝子とタンパク質の命名されたエンティティの抽出、抗微生物および抗がんペプチドの検出、分子最適化、教育生物情報学問題の解決が含まれる。
以上の結果から, GPT 変種のような LLM がこれらのタスクの多くをうまく処理できることが示唆された。
論文 参考訳(メタデータ) (2024-02-21T11:27:31Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - From Query Tools to Causal Architects: Harnessing Large Language Models
for Advanced Causal Discovery from Data [19.264745484010106]
大規模言語モデル (LLM) は、多くの社会的影響のある領域における概念間の因果解析の優れた能力を示す。
様々な因果発見および推論タスクにおけるLLM性能に関する最近の研究は、因果関係の古典的な3段階の枠組みに新たなはしごを生じさせている。
本稿では,知識に基づくLLM因果解析とデータ駆動因果構造学習を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-06-29T12:48:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。