論文の概要: Causally Reliable Concept Bottleneck Models
- arxiv url: http://arxiv.org/abs/2503.04363v1
- Date: Thu, 06 Mar 2025 12:06:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:01:06.584567
- Title: Causally Reliable Concept Bottleneck Models
- Title(参考訳): 因果信頼概念ボトルネックモデル
- Authors: Giovanni De Felice, Arianna Casanova Flores, Francesco De Santis, Silvia Santini, Johannes Schneider, Pietro Barbiero, Alberto Termine,
- Abstract要約: 我々はemphCausally reliable Concept Bottleneck Models (C$2$BMs)を提案する。
C$2$BMsは実世界の因果メカニズムのモデルに従って構成された概念のボトルネックを通じて推論を強制する。
C$2$BMはより解釈可能で、因果的信頼性があり、標準不透明モデルやコンセプトベースモデルのような介入に対する応答性を向上させる。
- 参考スコア(独自算出の注目度): 4.411356026951205
- License:
- Abstract: Concept-based models are an emerging paradigm in deep learning that constrains the inference process to operate through human-interpretable concepts, facilitating explainability and human interaction. However, these architectures, on par with popular opaque neural models, fail to account for the true causal mechanisms underlying the target phenomena represented in the data. This hampers their ability to support causal reasoning tasks, limits out-of-distribution generalization, and hinders the implementation of fairness constraints. To overcome these issues, we propose \emph{Causally reliable Concept Bottleneck Models} (C$^2$BMs), a class of concept-based architectures that enforce reasoning through a bottleneck of concepts structured according to a model of the real-world causal mechanisms. We also introduce a pipeline to automatically learn this structure from observational data and \emph{unstructured} background knowledge (e.g., scientific literature). Experimental evidence suggest that C$^2$BM are more interpretable, causally reliable, and improve responsiveness to interventions w.r.t. standard opaque and concept-based models, while maintaining their accuracy.
- Abstract(参考訳): 概念ベースモデルは深層学習における新たなパラダイムであり、推論プロセスが人間の解釈可能な概念を通して動作することを制限し、説明可能性と人間の相互作用を促進する。
しかしながら、これらのアーキテクチャは、一般的な不透明なニューラルモデルと同等であり、データに表されるターゲット現象の根底にある真の因果メカニズムを考慮できない。
これにより、因果推論タスクをサポートし、分布外一般化を制限し、公正性制約の実装を妨げる能力が損なわれる。
これらの課題を克服するために,実世界の因果メカニズムのモデルに基づいて構築された概念のボトルネックを通じて推論を強制する概念ベースアーキテクチャのクラスである 'emph{Causally reliable Concept Bottleneck Models} (C$^2$BMs) を提案する。
また,この構造を観測データや背景知識(科学文献など)から自動的に学習するパイプラインも導入する。
実験的な証拠は、C$^2$BMはより解釈可能で、因果的信頼性があり、標準不透明モデルやコンセプトベースモデルに対する応答性を向上し、精度を維持していることを示唆している。
関連論文リスト
- Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens [19.324263034925796]
概念ベースモデル(concept-based Model)は、入力を高レベルな概念にマッピングする概念抽出器と、これらを予測に変換する推論層を学習するニューラルネットワークである。
概念ベースモデルと推論ショートカット(RS)の新たな接続を確立することでこの問題を研究する。
具体的には、まずRSを概念ベースモデルのより複雑な設定に拡張し、次に概念と推論層の両方を識別するための理論的条件を導出する。
論文 参考訳(メタデータ) (2025-02-16T19:45:09Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
自然の高次元データから学習する概念は、ヒューマンアライメントと解釈可能な機械学習モデルの構築の可能性を秘めている。
我々は概念を階層的因果モデルを通して関連付けられた離散潜在因果変数として定式化する。
我々は、理論的な主張を合成データ実験で裏付ける。
論文 参考訳(メタデータ) (2024-06-01T18:01:03Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
大きな言語モデルの内部的推論メカニズムを調べることは、よりよいモデルアーキテクチャとトレーニング戦略を設計するのに役立ちます。
本研究では,トランスフォーマーモデルが垂直思考戦略を採用するメカニズムを解明するために,シンボリックデータセットを構築した。
我々は,GPT-2モデルに必要なトレーニング時間を75%削減し,モデルの推論能力を高めるために,ランダムな行列ベースアルゴリズムを提案した。
論文 参考訳(メタデータ) (2024-05-24T07:41:26Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Do Concept Bottleneck Models Respect Localities? [14.77558378567965]
概念に基づく手法は、人間の理解可能な概念を用いてモデル予測を説明する。
ローカリティ(Localities)とは、概念の価値を予測する際に、関連する機能のみを使用することである。
CBMは、独立概念が重複しない特徴部分集合に局所化されている場合でも、局所性を捉えない。
論文 参考訳(メタデータ) (2024-01-02T16:05:23Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Understanding and Enhancing Robustness of Concept-based Models [41.20004311158688]
対向摂動に対する概念ベースモデルの堅牢性について検討する。
本稿では、まず、概念ベースモデルのセキュリティ脆弱性を評価するために、さまざまな悪意ある攻撃を提案し、分析する。
そこで我々は,これらのシステムのロバスト性を高めるための,汎用的対人訓練に基づく防御機構を提案する。
論文 参考訳(メタデータ) (2022-11-29T10:43:51Z) - Concept Embedding Models [27.968589555078328]
概念ボトルネックモデルは、人間のような概念の中間レベルに分類タスクを条件付けすることで、信頼性を促進する。
既存の概念ボトルネックモデルは、高いタスク精度、堅牢な概念に基づく説明、概念に対する効果的な介入の間の最適な妥協を見つけることができない。
本稿では,解釈可能な高次元概念表現を学習することで,現在の精度-vs-解釈可能性トレードオフを超える新しい概念ボトルネックモデルであるConcept Embedding Modelsを提案する。
論文 参考訳(メタデータ) (2022-09-19T14:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。