論文の概要: Scale-Invariant Adversarial Attack against Arbitrary-scale Super-resolution
- arxiv url: http://arxiv.org/abs/2503.04385v1
- Date: Thu, 06 Mar 2025 12:36:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:59:26.731229
- Title: Scale-Invariant Adversarial Attack against Arbitrary-scale Super-resolution
- Title(参考訳): 任意スケール超解像に対するスケール不変逆数攻撃
- Authors: Yihao Huang, Xin Luo, Qing Guo, Felix Juefei-Xu, Xiaojun Jia, Weikai Miao, Geguang Pu, Yang Liu,
- Abstract要約: 局所連続画像関数(LIIF)は、任意のスケールの超解像(SR)技術に対して大きな注目を集めている。
敵の攻撃に対する連続表現に基づく任意のスケールのSRの堅牢性は、さらなる探索を保証している領域のままである。
本稿では, SIAGT と呼ばれる, 高い転送性を有する簡易かつ効果的なスケール不変な SR 逆攻撃法を提案する。
- 参考スコア(独自算出の注目度): 28.081491938264097
- License:
- Abstract: The advent of local continuous image function (LIIF) has garnered significant attention for arbitrary-scale super-resolution (SR) techniques. However, while the vulnerabilities of fixed-scale SR have been assessed, the robustness of continuous representation-based arbitrary-scale SR against adversarial attacks remains an area warranting further exploration. The elaborately designed adversarial attacks for fixed-scale SR are scale-dependent, which will cause time-consuming and memory-consuming problems when applied to arbitrary-scale SR. To address this concern, we propose a simple yet effective ``scale-invariant'' SR adversarial attack method with good transferability, termed SIAGT. Specifically, we propose to construct resource-saving attacks by exploiting finite discrete points of continuous representation. In addition, we formulate a coordinate-dependent loss to enhance the cross-model transferability of the attack. The attack can significantly deteriorate the SR images while introducing imperceptible distortion to the targeted low-resolution (LR) images. Experiments carried out on three popular LIIF-based SR approaches and four classical SR datasets show remarkable attack performance and transferability of SIAGT.
- Abstract(参考訳): 局所連続像関数(LIIF)の出現は、任意のスケールの超解像(SR)技術に大きな注目を集めている。
しかしながら、固定スケールSRの脆弱性は評価されているものの、連続表現に基づく任意のスケールSRの敵攻撃に対する堅牢性は、さらなる探索を保証している領域である。
固定スケールSRに対する精巧に設計された敵攻撃はスケール依存であり、任意のスケールSRに適用した場合の時間とメモリ消費の問題を引き起こす。
この問題に対処するため, SIAGT と呼ばれる, 高い転送性を有する単純な「スケール不変」SR逆攻撃法を提案する。
具体的には,連続表現の有限個の離散点を利用して資源節約攻撃を構築することを提案する。
さらに,アタックのクロスモデル転送性を高めるために座標依存損失を定式化する。
この攻撃は、ターゲットの低解像度(LR)画像に知覚不可能な歪みを導入しながら、SR画像を著しく劣化させる可能性がある。
3つの人気のあるLIIFベースのSRアプローチと4つの古典的SRデータセットによる実験は、SIAGTの顕著な攻撃性能と転送性を示している。
関連論文リスト
- Latent Diffusion, Implicit Amplification: Efficient Continuous-Scale Super-Resolution for Remote Sensing Images [7.920423405957888]
E$2$DiffSRは、最先端のSR手法と比較して、客観的な指標と視覚的品質を達成する。
拡散に基づくSR法の推論時間を非拡散法と同程度のレベルに短縮する。
論文 参考訳(メタデータ) (2024-10-30T09:14:13Z) - Exploiting Self-Supervised Constraints in Image Super-Resolution [72.35265021054471]
本稿では,SSC-SRと呼ばれる単一画像超解像のための新しい自己監督制約を提案する。
SSC-SRは、安定性を高めるために指数移動平均によって更新された二重非対称パラダイムとターゲットモデルを用いることで、画像の複雑さのばらつきに一意に対処する。
SSC-SRフレームワークはさまざまなベンチマークデータセットに対して,EDSR平均0.1dB,SwinIR平均0.06dBの大幅な拡張を実現している。
論文 参考訳(メタデータ) (2024-03-30T06:18:50Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
単一画像超解像(SISR)は、与えられた低解像度(LR)画像を高解像度(HR)にアップサンプリングすることを目的とした課題である。
近年のアプローチは、単純化されたダウンサンプリング演算子によって劣化したシミュレーションLR画像に基づいて訓練されている。
Invertible Scale-Conditional Function (ICF) を提案する。これは入力画像をスケールし、異なるスケール条件で元の入力を復元する。
論文 参考訳(メタデータ) (2023-07-24T12:42:45Z) - CiaoSR: Continuous Implicit Attention-in-Attention Network for
Arbitrary-Scale Image Super-Resolution [158.2282163651066]
本稿ではCiaoSRと呼ばれる連続的な暗黙の注意-注意ネットワークを提案する。
我々は、周辺地域の特徴のアンサンブル重みを学習するために、暗黙の注意ネットワークを明示的に設計する。
我々は、この暗黙の注意ネットワークにスケールアウェアの注意を埋め込んで、追加の非ローカル情報を活用する。
論文 参考訳(メタデータ) (2022-12-08T15:57:46Z) - The Best of Both Worlds: a Framework for Combining Degradation
Prediction with High Performance Super-Resolution Networks [14.804000317612305]
本稿では,ブラインドSR予測機構とディープSRネットワークを組み合わせるためのフレームワークを提案する。
我々は、我々のハイブリッドモデルが、非盲目モデルと盲目モデルの両方よりも強いSR性能を一貫して達成していることを示す。
論文 参考訳(メタデータ) (2022-11-09T16:49:35Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
本稿では,複合対向攻撃 (CAA) が画像に与える影響を実証する。
異なるモデルのリアルタイム推論を提供し、攻撃レベルのパラメータの設定を容易にする。
CAAに対する敵対的堅牢性を評価するためのリーダーボードも導入されている。
論文 参考訳(メタデータ) (2022-07-16T01:08:44Z) - Degradation-Guided Meta-Restoration Network for Blind Super-Resolution [45.61951760826198]
ブラインド超解像(SR)は、低解像度(LR)画像から高品質な視覚テクスチャを復元することを目的としている。
既存のSRアプローチは、事前に定義されたぼやけたカーネルや固定ノイズを仮定する。
本稿では,視覚障害者の視力回復を支援する,視力超解像(DMSR)のための劣化誘導型メタ修復ネットワークを提案する。
論文 参考訳(メタデータ) (2022-07-03T03:24:45Z) - SRWarp: Generalized Image Super-Resolution under Arbitrary
Transformation [65.88321755969677]
ディープCNNは、単一の画像超解像を含む画像処理とそのアプリケーションで大きな成功を収めています。
近年のアプローチでは、実測値のアップサンプリング要因にまで範囲を広げている。
任意の画像変換に向けてSRタスクをさらに一般化するSRWarpフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-21T02:50:41Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。