ToFu: Visual Tokens Reduction via Fusion for Multi-modal, Multi-patch, Multi-image Task
- URL: http://arxiv.org/abs/2503.04444v1
- Date: Thu, 06 Mar 2025 14:00:59 GMT
- Title: ToFu: Visual Tokens Reduction via Fusion for Multi-modal, Multi-patch, Multi-image Task
- Authors: Vittorio Pippi, Matthieu Guillaumin, Silvia Cascianelli, Rita Cucchiara, Maximilian Jaritz, Loris Bazzani,
- Abstract summary: We propose ToFu, a visual encoder-agnostic, training-free Token Fusion strategy for high-resolution, multi-image, tasks.<n>We validate our approach on the well-established LLaVA-Interleave Bench, which covers challenging multi-image tasks.
- Score: 34.269081635534526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Multimodal Models (LMMs) are powerful tools that are capable of reasoning and understanding multimodal information beyond text and language. Despite their entrenched impact, the development of LMMs is hindered by the higher computational requirements compared to their unimodal counterparts. One of the main causes of this is the large amount of tokens needed to encode the visual input, which is especially evident for multi-image multimodal tasks. Recent approaches to reduce visual tokens depend on the visual encoder architecture, require fine-tuning the LLM to maintain the performance, and only consider single-image scenarios. To address these limitations, we propose ToFu, a visual encoder-agnostic, training-free Token Fusion strategy that combines redundant visual tokens of LMMs for high-resolution, multi-image, tasks. The core intuition behind our method is straightforward yet effective: preserve distinctive tokens while combining similar ones. We achieve this by sequentially examining visual tokens and deciding whether to merge them with others or keep them as separate entities. We validate our approach on the well-established LLaVA-Interleave Bench, which covers challenging multi-image tasks. In addition, we push to the extreme our method by testing it on a newly-created benchmark, ComPairs, focused on multi-image comparisons where a larger amount of images and visual tokens are inputted to the LMMs. Our extensive analysis, considering several LMM architectures, demonstrates the benefits of our approach both in terms of efficiency and performance gain.
Related papers
- Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.<n>We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.<n>We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
We propose a training-free adaptive inference method for multi-modal LLMs.
With a minimalist design, our method can be applied to both video and image LLMs.
Under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding.
arXiv Detail & Related papers (2024-12-04T11:47:57Z) - SymDPO: Boosting In-Context Learning of Large Multimodal Models with Symbol Demonstration Direct Preference Optimization [49.931663904599205]
Researchers have developed techniques to develop Large Multimodal Models with In-Context Learning capabilities.
Existing LMMs fail to effectively leverage the visual context in multimodal demonstrations and instead simply follow textual patterns.
We propose Symbol Demonstration Direct Preference Optimization (SymDPO) to break the traditional paradigm of constructing multimodal demonstrations.
arXiv Detail & Related papers (2024-11-17T08:29:14Z) - Sparsity Meets Similarity: Leveraging Long-Tail Distribution for Dynamic Optimized Token Representation in Multimodal Large Language Models [6.467840081978855]
multimodal large language models (MM-LLMs) have achieved significant success in various tasks.<n>Main computational burden arises from processingd text and visual tokens.<n>We propose a dynamic pruning algorithm that identifies the inflection point in the visual CLS token similarity curve.
arXiv Detail & Related papers (2024-09-02T10:49:10Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - Matryoshka Multimodal Models [92.41824727506751]
We propose M3: Matryoshka Multimodal Models, which learns to represent visual content as nested sets of visual tokens.
We find that COCO-style benchmarks only need around 9 visual tokens to obtain accuracy similar to that of using all 576 tokens.
arXiv Detail & Related papers (2024-05-27T17:59:56Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
Large Multimodal Models (LMMs) have shown significant visual reasoning capabilities by connecting a visual encoder and a large language model.
Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which further increases the number of visual tokens significantly.
We propose PruMerge, a novel adaptive visual token reduction strategy that significantly reduces the number of visual tokens without compromising the performance of LMMs.
arXiv Detail & Related papers (2024-03-22T17:59:52Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks.
However, they fall short to comprehend context involving multiple images.
We propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion.
arXiv Detail & Related papers (2024-02-19T14:59:07Z) - MouSi: Poly-Visual-Expert Vision-Language Models [132.58949014605477]
This paper proposes the use of ensemble experts technique to synergize the capabilities of individual visual encoders.
This technique introduces a fusion network to unify the processing of outputs from different visual experts.
In our implementation, this technique significantly reduces the positional occupancy in models like SAM, from a substantial 4096 to a more efficient and manageable 64 or even down to 1.
arXiv Detail & Related papers (2024-01-30T18:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.