論文の概要: Generalized Interpolating Discrete Diffusion
- arxiv url: http://arxiv.org/abs/2503.04482v1
- Date: Thu, 06 Mar 2025 14:30:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:01:50.393188
- Title: Generalized Interpolating Discrete Diffusion
- Title(参考訳): 一般補間離散拡散
- Authors: Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, Thomas Hofmann,
- Abstract要約: 仮面拡散はその単純さと有効性のために一般的な選択である。
離散拡散過程を補間する一般族の理論的バックボーンを導出する。
GIDDのフレキシビリティをエクスプロイトし、マスクと均一ノイズを組み合わせたハイブリッドアプローチを探索する。
- 参考スコア(独自算出の注目度): 65.74168524007484
- License:
- Abstract: While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration of alternative approaches such as discrete diffusion. However, masked diffusion, which has emerged as a popular choice due to its simplicity and effectiveness, reintroduces this inability to revise words. To overcome this, we generalize masked diffusion and derive the theoretical backbone of a family of general interpolating discrete diffusion (GIDD) processes offering greater flexibility in the design of the noising processes. Leveraging a novel diffusion ELBO, we achieve compute-matched state-of-the-art performance in diffusion language modeling. Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality and unlocking the ability for the model to correct its own mistakes, an area where autoregressive models notoriously have struggled. Our code and models are open-source: https://github.com/dvruette/gidd/
- Abstract(参考訳): 最先端の言語モデルは、次世代の予測によって印象的な結果を得るが、すでに生成されたトークンを更新できないなど、固有の制限がある。
これは離散拡散のような別のアプローチを探求するきっかけとなった。
しかし、その単純さと有効性から人気を博した仮面拡散は、この言葉を書き換えることができないことを再導入する。
これを克服するために、マスク拡散を一般化し、離散拡散(GIDD)過程の一般補間過程の理論的バックボーンを導出し、ノイズ発生過程の設計により高い柔軟性を提供する。
拡散言語モデリングにおいて,新しい拡散言語ELBOを活用することで,計算マッチングによる最先端性能を実現する。
GIDDの柔軟性をエクスプロイトし、マスクと均一ノイズを組み合わせたハイブリッドアプローチを探索し、サンプル品質を改善し、自己回帰モデルが苦戦している領域である、自己回帰モデルの誤りを訂正する能力を開放する。
私たちのコードとモデルはオープンソースです。
関連論文リスト
- Continuous Diffusion Model for Language Modeling [57.396578974401734]
離散データに対する既存の連続拡散モデルは、離散的アプローチと比較して性能が限られている。
本稿では,下層の分類分布の幾何学を組み込んだ言語モデリングのための連続拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-17T08:54:29Z) - Discrete Diffusion Language Model for Long Text Summarization [19.267738861590487]
本稿では,トランスフォーマーのバックボーンが長いシーケンスを効果的に扱えるような,セマンティック・アウェア・ノーミング・プロセスを提案する。
提案手法は,Gigaword,CNN/DailyMail,Arxivの3つのベンチマーク要約データセットに対して,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-06-25T09:55:22Z) - Multiple-Source Localization from a Single-Snapshot Observation Using Graph Bayesian Optimization [10.011338977476804]
単一スナップショット観測によるマルチソースのローカライゼーションは、その頻度が原因で特に重要となる。
現在の方法は典型的には欲求選択を利用しており、通常は1つの拡散モデルと結合する。
そこで本研究では,BOSouLというシミュレーション手法を用いて,サンプル効率を近似する手法を提案する。
論文 参考訳(メタデータ) (2024-03-25T14:46:24Z) - Diffusion of Thoughts: Chain-of-Thought Reasoning in Diffusion Language Models [100.53662473219806]
Diffusion-of-Thought (DoT) は、拡散モデルとChain-of-Thoughtを統合する新しいアプローチである。
DoTは、拡散言語モデルを通じて、時間とともに推論ステップが拡散することを可能にする。
本研究は,多桁乗算,論理学,小学校数学におけるDoTの有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-12T16:23:28Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LMは言語モデリングのための新しい拡散モデルであり、言語の言語的特徴に触発されている。
具体的には,テキストデータのノイズを改善するために,戦略的ソフトマスキングによってテキストに劣化を加える言語情報処理を設計する。
我々は,我々のMasked-Diffuse LMが,高効率の最先端拡散モデルよりも優れた生成品質を達成できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:58:42Z) - Information-Theoretic Diffusion [18.356162596599436]
拡散モデルのデノイングは密度モデリングや画像生成において大きな進歩をもたらした。
情報理論における古典的な結果にインスパイアされた拡散モデルのための新しい数学的基礎を導入する。
論文 参考訳(メタデータ) (2023-02-07T23:03:07Z) - StoRM: A Diffusion-based Stochastic Regeneration Model for Speech
Enhancement and Dereverberation [20.262426487434393]
本稿では,予測モデルによる推定値がさらなる拡散のガイドとして提供される再生手法を提案する。
提案手法は, 高い品質のサンプルを作成しながら, 発声・呼吸アーチファクトを除去するために, 予測モデルを用いていることを示す。
論文 参考訳(メタデータ) (2022-12-22T16:35:42Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERTは離散拡散モデルに基づく新しい生成マスク付き言語モデルである。
本稿では,各ステップに付加される雑音の度合いを制御する前方拡散プロセスのための新しいノイズスケジュールを提案する。
非条件テキスト生成の実験では、DiffusionBERTは既存のテキスト拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-11-28T03:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。