論文の概要: Omnidirectional Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2503.04565v1
- Date: Thu, 06 Mar 2025 15:53:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:57:35.017078
- Title: Omnidirectional Multi-Object Tracking
- Title(参考訳): 全方位多物体追跡
- Authors: Kai Luo, Hao Shi, Sheng Wu, Fei Teng, Mengfei Duan, Chang Huang, Yuhang Wang, Kaiwei Wang, Kailun Yang,
- Abstract要約: ほとんどのMulti-Object Tracking (MOT)アルゴリズムは、視野に制限のあるピンホール画像用に調整されている。
パノラマ画像歪み(解像度損失、幾何学的変形、不均一照明など)は、既存のMOT法の直接適応を妨げる。
我々はOmniTrackを提案する。OmniTrackはOmniMOTフレームワークであり、Tracklet Managementを組み込んだ時間的キュー、オブジェクトのローカライゼーションとアソシエーションのためのFlexiTrackインスタンス、CircularStatEモジュールである。
- 参考スコア(独自算出の注目度): 27.858084330925372
- License:
- Abstract: Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in large field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as wide fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The dataset and code will be made publicly available at https://github.com/xifen523/OmniTrack.
- Abstract(参考訳): パノラマ画像は、360{\deg}視野で、周囲の物体の空間的および時間的関係を捉えるために、MOT(Multi-Object Tracking)をサポートする包括的な情報を提供する。
しかし、ほとんどのMOTアルゴリズムは、視野が限られているピンホール画像用に調整されており、パノラマ環境での有効性を損なう。
さらに、解像度損失、幾何変形、不均一照明などのパノラマ画像歪みは、既存のMOT法の直接適応を妨げ、性能を著しく低下させる。
これらの課題に対処するために、トラックレット管理を組み込んだ全方向MOTフレームワークであるOmniTrack、オブジェクトのローカライゼーションとアソシエーションのためのFlexiTrackインスタンス、画像や幾何学的歪みを軽減するCircularStatEモジュールを提案する。
この統合により、迅速なセンサーの動きであっても、視野の広いシナリオでのトラッキングが可能になる。
パノラマMOTデータセットの欠如を軽減するため、四足歩行ロボットが収集した包括的パノラマデータセットであるQuadTrackデータセットを導入する。
JRDBデータセットと新たに導入されたQuadTrackベンチマークに関する大規模な実験は、提案フレームワークの最先端性能を実証している。
OmniTrackは、JRDBで26.92%のHOTAスコアを獲得し、3.43%の改善、さらに23.45%のQuadTrackでベースラインを6.81%越えている。
データセットとコードはhttps://github.com/xifen523/OmniTrack.comで公開される。
関連論文リスト
- MCTrack: A Unified 3D Multi-Object Tracking Framework for Autonomous Driving [10.399817864597347]
本稿では,KITTI, nuScenes, データセット間でのSOTA(State-of-the-art)性能を実現する3Dマルチオブジェクトトラッキング手法であるMCTrackを紹介する。
論文 参考訳(メタデータ) (2024-09-23T11:26:01Z) - RaTrack: Moving Object Detection and Tracking with 4D Radar Point Cloud [10.593320435411714]
レーダベースのトラッキングに適した革新的なソリューションであるRaTrackを紹介します。
本手法は,動き推定モジュールによって強化された動き分割とクラスタリングに焦点を当てる。
RaTrackは移動物体の追跡精度が優れており、最先端の技術をはるかに上回っている。
論文 参考訳(メタデータ) (2023-09-18T13:02:29Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
マルチオブジェクトトラッキング(MOT)は、ビデオフレーム間のオブジェクトのバウンディングボックスとIDを推定することを目的としている。
低スコア検出ボックス内の真のオブジェクトをマイニングするための階層型データアソシエーション戦略を提案する。
3次元のシナリオでは、トラッカーが世界座標の物体速度を予測するのがずっと簡単である。
論文 参考訳(メタデータ) (2023-03-27T15:35:21Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
LiDARポイントクラウド(LiDAR SOT)における3Dシングルオブジェクトトラッキングは、自動運転において重要な役割を果たす。
現在のアプローチはすべて、外観マッチングに基づくシームズパラダイムに従っている。
我々は新たな視点からLiDAR SOTを扱うための動き中心のパラダイムを導入する。
論文 参考訳(メタデータ) (2023-03-21T17:28:44Z) - DIVOTrack: A Novel Dataset and Baseline Method for Cross-View
Multi-Object Tracking in DIVerse Open Scenes [74.64897845999677]
歩行者が密集したDIVerse Openのシーンを対象とした,新しいクロスビュー多目的追跡データセットを提案する。
私たちのDIVOTrackには15の異なるシナリオと953のクロスビュートラックがあります。
さらに,クロスモット(CrossMOT)という統合型共同検出・クロスビュートラッキングフレームワークを用いた新しいベースラインクロスビュートラッキング手法を提案する。
論文 参考訳(メタデータ) (2023-02-15T14:10:42Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3Dオブジェクトトラッキングは、自律運転など、多くのアプリケーションにおいて重要な役割を果たす。
CXTrackは3次元オブジェクト追跡のためのトランスフォーマーベースのネットワークである。
CXTrackは29FPSで動作しながら最先端のトラッキング性能を実現する。
論文 参考訳(メタデータ) (2022-11-12T11:29:01Z) - InterTrack: Interaction Transformer for 3D Multi-Object Tracking [9.283656931246645]
3Dマルチオブジェクトトラッキング(MOT)は、自動運転車にとって重要な問題である。
提案手法であるInterTrackは,データアソシエーションのための識別対象表現を生成する。
我々はnuScenes 3D MOTベンチマークのアプローチを検証する。
論文 参考訳(メタデータ) (2022-08-17T03:24:36Z) - LMGP: Lifted Multicut Meets Geometry Projections for Multi-Camera
Multi-Object Tracking [42.87953709286856]
マルチカメラ マルチオブジェクト追跡は、現実のアプリケーションにおいて優れた性能を持つため、コンピュータビジョン分野において現在注目されている。
本稿では,空間時空間昇降型マルチカット定式化に基づく数学的にエレガントなマルチカメラ・マルチオブジェクト追跡手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T14:09:47Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
MMPAT(MultiModality PAnoramic Multi-object Tracking framework)を提案する。
2次元パノラマ画像と3次元点雲を入力とし、マルチモーダルデータを用いて目標軌道を推定する。
提案手法は,検出タスクと追跡タスクの両方においてMMPATが最高性能を達成するJRDBデータセット上で評価する。
論文 参考訳(メタデータ) (2021-05-31T03:16:38Z) - Tracking Objects as Points [83.9217787335878]
同時に検出と追跡を同時に行うアルゴリズムは,最先端技術よりもシンプルで,高速で,高精度である。
トラッカーであるCenterTrackは、前のフレームから一対のイメージと検出に検出モデルを適用します。
CenterTrackはシンプルで、オンライン(未来を覗くことはない)で、リアルタイムだ。
論文 参考訳(メタデータ) (2020-04-02T17:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。