論文の概要: Towards Data-Efficient Language Models: A Child-Inspired Approach to Language Learning
- arxiv url: http://arxiv.org/abs/2503.04611v1
- Date: Thu, 06 Mar 2025 16:57:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 16:00:09.356444
- Title: Towards Data-Efficient Language Models: A Child-Inspired Approach to Language Learning
- Title(参考訳): データ効率のよい言語モデルを目指して--子どもにヒントを得た言語学習アプローチ
- Authors: Mohammad Amin Ghanizadeh, Mohammad Javad Dousti,
- Abstract要約: 我々は,従来の大規模言語モデル (LLM) と比較して,データ量が大幅に少ない様々な言語モデル(LM)を訓練する手法を用いている。
そこで本研究では,主に児童向け文字起こしから得られた1000万語からなるキュレートデータセットに基づいて学習したモデルを構築した。
我々は語彙を32,000のトークンに減らし、言語習得の初期段階の子供たちの限られた語彙と整合させる。
- 参考スコア(独自算出の注目度): 2.565964707090901
- License:
- Abstract: In this work, we explain our approach employed in the BabyLM Challenge, which uses various methods of training language models (LMs) with significantly less data compared to traditional large language models (LLMs) and are inspired by how human children learn. While a human child is exposed to far less linguistic input than an LLM, they still achieve remarkable language understanding and generation abilities. To this end, we develop a model trained on a curated dataset consisting of 10 million words, primarily sourced from child-directed transcripts. The 2024 BabyLM Challenge initial dataset of 10M words is filtered to 8.5M. Next, it is supplemented with a randomly selected subset of TVR dataset consisting of 1.5M words of television dialogues. The latter dataset ensures that similar to children, the model is also exposed to language through media. Furthermore, we reduce the vocabulary size to 32,000 tokens, aligning it with the limited vocabulary of children in the early stages of language acquisition. We use curriculum learning and is able to match the baseline on certain benchmarks while surpassing the baseline on others. Additionally, incorporating common LLM training datasets, such as MADLAD-400, degrades performance. These findings underscore the importance of dataset selection, vocabulary scaling, and curriculum learning in creating more data-efficient language models that better mimic human learning processes.
- Abstract(参考訳): 本研究では,従来の大規模言語モデル (LLM) と比較してデータが少ない様々な言語モデル (LM) を用いたBabyLM Challenge のアプローチについて説明する。
人間の子どもはLLMよりも言語的入力がはるかに少ないが、言語理解と生成能力は目覚ましい。
そこで本研究では,主に児童向け書き起こしから得られた1000万語からなるキュレートデータセットに基づいて学習したモデルを構築した。
2024 BabyLM Challengeの最初の10万ワードのデータセットは8.5Mにフィルタリングされる。
次に、テレビ対話の150万語からなるTVRデータセットのランダムに選択されたサブセットを補足する。
後者のデータセットは、子供と同様、モデルをメディアを通じて言語に公開することを保証する。
さらに,言語習得の初期段階において,語彙サイズを32,000トークンに減らし,限られた子どもの語彙と整合させる。
カリキュラム学習を使用し、特定のベンチマークのベースラインにマッチし、他のベンチマークのベースラインを超えることができる。
さらに、MADLAD-400のような一般的なLLMトレーニングデータセットを組み込むことで、パフォーマンスが低下する。
これらの結果は、データセットの選択、語彙のスケーリング、カリキュラム学習の重要性を強調し、人間の学習プロセスを模倣するよりデータ効率の良い言語モデルを作成する。
関連論文リスト
- BabyLMs for isiXhosa: Data-Efficient Language Modelling in a Low-Resource Context [2.57490464660469]
BabyLMの課題は、参加者にサンプル効率の良い言語モデルを開発することであった。
申請は、子供が開発中に露出する単語の量に制限される、固定された英語コーパスで事前訓練された。
データ効率のよい言語モデリングのための新しいアーキテクチャは、数兆ワードで訓練されたモデルよりも優れていた。
論文 参考訳(メタデータ) (2025-01-07T15:13:45Z) - Findings of the Second BabyLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Corpora [79.03392191805028]
BabyLM Challengeは、人間と計算言語学習者のデータ効率ギャップを埋めるためのコミュニティの取り組みである。
参加者は1億ワード以下の固定言語データ予算で、言語モデルトレーニングを最適化するために競争する。
論文 参考訳(メタデータ) (2024-12-06T16:06:08Z) - Is Child-Directed Speech Effective Training Data for Language Models? [34.46268640655943]
GPT-2 と RoBERTa モデルを英語の子供指向音声の29万語で学習する。
子どものトレーニングデータのグローバルな発達順序付けやローカルな談話順序付けが、他のデータセットと比較して高いパフォーマンスを支えているかどうかを検証する。
これらの結果は、より良いデータから進むのではなく、子供の学習アルゴリズムが現在の言語モデリング技術よりもはるかにデータ効率が高いという仮説を支持している。
論文 参考訳(メタデータ) (2024-08-07T08:18:51Z) - Amharic LLaMA and LLaVA: Multimodal LLMs for Low Resource Languages [0.0]
大規模言語モデル(LLM)は、自然言語処理タスクにおいて驚くほどの習熟度を示している。
LLMは、トレーニングデータが少ないため、低リソースの言語でよく機能するのに苦労することが多い。
本研究では,世界5000万人以上の人々が話す言語であるAmharicを話すためのLLaMA-2の訓練について検討する。
論文 参考訳(メタデータ) (2024-03-11T01:04:36Z) - The Ups and Downs of Large Language Model Inference with Vocabulary Trimming by Language Heuristics [74.99898531299148]
本研究は,興味のある言語への埋め込みエントリを制限し,時間と記憶効率を高めることによる語彙トリミング(VT)について検討する。
Unicodeベースのスクリプトフィルタリングとコーパスベースの選択という2つの言語を異なる言語ファミリやサイズに適用する。
その結果、VTは小型モデルのメモリ使用量を50%近く削減し、生成速度が25%向上した。
論文 参考訳(メタデータ) (2023-11-16T09:35:50Z) - Mini Minds: Exploring Bebeshka and Zlata Baby Models [3.558894829990311]
本稿では,リヨン2大学がBabyLMコンペティションのStrict-Smallトラックに応募したことを述べる。
評価のために提出された2つの小型言語モデル(LM)を紹介する。
ベースラインLMの半分のスケールであるにもかかわらず、提案したモデルは同等の性能を実現している。
論文 参考訳(メタデータ) (2023-11-06T16:01:10Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Baby's CoThought: Leveraging Large Language Models for Enhanced
Reasoning in Compact Models [3.1244568065126863]
より小さな"ベイビー"言語モデル(BabyLM)を効率的に学習する"CoThought"パイプラインを提案する。
我々のパイプラインは、GPT-3.5-turboを使って1億以下のデータセットを再構成し、タスク指向のヒューマン可読テキストに変換する。
私たちのBabyLMは、言語、NLU、質問応答タスクにおいて、バニラRoBERTaよりも3ポイント以上優れています。
論文 参考訳(メタデータ) (2023-08-03T10:52:52Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。