論文の概要: 3HANDS Dataset: Learning from Humans for Generating Naturalistic Handovers with Supernumerary Robotic Limbs
- arxiv url: http://arxiv.org/abs/2503.04635v1
- Date: Thu, 06 Mar 2025 17:23:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:57:34.306116
- Title: 3HANDS Dataset: Learning from Humans for Generating Naturalistic Handovers with Supernumerary Robotic Limbs
- Title(参考訳): 3HANDSデータセット:超数個のロボット肢を用いた自然主義的ハンドオーバ生成のための人間からの学習
- Authors: Artin Saberpour Abadian, Yi-Chi Liao, Ata Otaran, Rishabh Dabral, Marie Muehlhaus, Christian Theobalt, Martin Schmitz, Jürgen Steimle,
- Abstract要約: スーパー数式ロボットアーム(英: Supernumerary Robotics limbs、SRL)は、ユーザーの身体と密に統合されたロボット構造である。
3HANDSは,日常活動を行う参加者と,ヒップマウントSRLを自然な方法で実施する参加者との間の,オブジェクトハンドオーバインタラクションの新たなデータセットである。
本稿では,自然なハンドオーバ軌跡を生成する3つのモデル,適切なハンドオーバエンドポイントを決定する1つのモデル,ハンドオーバ開始のタイミングを予測する3つのモデルを提案する。
- 参考スコア(独自算出の注目度): 64.99122701615151
- License:
- Abstract: Supernumerary robotic limbs (SRLs) are robotic structures integrated closely with the user's body, which augment human physical capabilities and necessitate seamless, naturalistic human-machine interaction. For effective assistance in physical tasks, enabling SRLs to hand over objects to humans is crucial. Yet, designing heuristic-based policies for robots is time-consuming, difficult to generalize across tasks, and results in less human-like motion. When trained with proper datasets, generative models are powerful alternatives for creating naturalistic handover motions. We introduce 3HANDS, a novel dataset of object handover interactions between a participant performing a daily activity and another participant enacting a hip-mounted SRL in a naturalistic manner. 3HANDS captures the unique characteristics of SRL interactions: operating in intimate personal space with asymmetric object origins, implicit motion synchronization, and the user's engagement in a primary task during the handover. To demonstrate the effectiveness of our dataset, we present three models: one that generates naturalistic handover trajectories, another that determines the appropriate handover endpoints, and a third that predicts the moment to initiate a handover. In a user study (N=10), we compare the handover interaction performed with our method compared to a baseline. The findings show that our method was perceived as significantly more natural, less physically demanding, and more comfortable.
- Abstract(参考訳): スーパー数式ロボットアーム(英: Supernumerary robotic limb、SRL)は、人間の身体と密に統合されたロボット構造であり、人間の身体能力を高め、シームレスで自然主義的な人間と機械の相互作用を必要とする。
物理的タスクを効果的に支援するためには、SRLが人間にオブジェクトを渡せることが不可欠である。
しかし、ロボットのためのヒューリスティックなポリシーを設計することは時間がかかり、タスク全体にわたって一般化することは困難であり、結果として人間のような動きが減る。
適切なデータセットでトレーニングする場合、生成モデルは自然主義的なハンドオーバ運動を作るための強力な代替手段である。
3HANDSは,日常活動を行う参加者と,ヒップマウントSRLを自然な方法で実施する参加者との間の,オブジェクトハンドオーバインタラクションの新たなデータセットである。
3HANDSは、非対称なオブジェクト起源を持つ親密なパーソナル空間の操作、暗黙のモーション同期、ハンドオーバ時のユーザの一次タスクにおけるエンゲージメントなど、SRLインタラクションのユニークな特徴をキャプチャする。
データセットの有効性を示すために,自然主義的なハンドオーバ軌跡を生成するモデルと,適切なハンドオーバエンドポイントを決定するモデルと,ハンドオーバ開始のタイミングを予測するモデルとを提示する。
ユーザスタディ(N=10)では,提案手法を用いたハンドオーバインタラクションをベースラインと比較した。
以上の結果から,本手法はより自然で,身体的要求が小さく,快適であると考えられた。
関連論文リスト
- Real-Time Dynamic Robot-Assisted Hand-Object Interaction via Motion Primitives [45.256762954338704]
本稿では,動的ロボット支援ハンドオブジェクトインタラクションに着目した物理HRIの強化手法を提案する。
我々はトランスフォーマーに基づくアルゴリズムを用いて、1枚のRGB画像から人間の手の動きをリアルタイムに3Dモデリングする。
ロボットのアクション実装は、継続的に更新された3Dハンドモデルを使用して動的に微調整される。
論文 参考訳(メタデータ) (2024-05-29T21:20:16Z) - Kinematically Constrained Human-like Bimanual Robot-to-Human Handovers [19.052211315080044]
双方向のハンドオーバは、大きな、変形可能な、または繊細なオブジェクトの転送に不可欠である。
本稿では,人体に拘束されたロボット動作を生成するための枠組みを提案する。
論文 参考訳(メタデータ) (2024-02-22T13:19:02Z) - Learning Multimodal Latent Dynamics for Human-Robot Interaction [19.803547418450236]
本稿では,ヒト-ヒトインタラクション(HHI)から協調型人間-ロボットインタラクション(HRI)を学習する方法を提案する。
本研究では,隠れマルコフモデル(HMM)を変分オートエンコーダの潜在空間として用いて,相互作用するエージェントの結合分布をモデル化するハイブリッドアプローチを考案する。
ユーザが私たちのメソッドを,より人間らしく,タイムリーで,正確なものと認識し,他のベースラインよりも高い優先度でメソッドをランク付けすることが分かりました。
論文 参考訳(メタデータ) (2023-11-27T23:56:59Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
関節間の所望距離を維持するために,新しい制御可能な運動生成手法であるInterControlを導入する。
そこで本研究では,既成の大規模言語モデルを用いて,ヒューマンインタラクションのための結合ペア間の距離を生成できることを実証した。
論文 参考訳(メタデータ) (2023-11-27T14:32:33Z) - NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis [21.650091018774972]
我々は、特定の物体に付随する神経相互作用場を作成し、人間のポーズを入力として与えられた有効な相互作用多様体までの距離を出力する。
この相互作用場は、対象条件付きヒトの運動拡散モデルのサンプリングを導く。
いくつかの物体で座ったり持ち上げたりするための現実的な動きを合成し、動きの質や動作完了の成功の観点から、代替のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-07-14T17:59:38Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - BEHAVE: Dataset and Method for Tracking Human Object Interactions [105.77368488612704]
マルチビューのRGBDフレームとそれに対応する3D SMPLとオブジェクトをアノテートしたアノテートコンタクトに適合させる。
このデータを用いて、自然環境における人間と物体を、容易に使用可能なマルチカメラで共同で追跡できるモデルを学ぶ。
論文 参考訳(メタデータ) (2022-04-14T13:21:19Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
本稿では,ロボットが人間に遭遇するロボットのハンドオーバに対するアプローチを提案する。
対象物をさまざまな手形やポーズで保持する典型的な方法をカバーする,人間の把握データセットを収集する。
本稿では,検出した把握位置と手の位置に応じて人手から対象物を取り出す計画実行手法を提案する。
論文 参考訳(メタデータ) (2020-03-12T19:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。