Mark Your LLM: Detecting the Misuse of Open-Source Large Language Models via Watermarking
- URL: http://arxiv.org/abs/2503.04636v2
- Date: Sat, 15 Mar 2025 20:03:47 GMT
- Title: Mark Your LLM: Detecting the Misuse of Open-Source Large Language Models via Watermarking
- Authors: Yijie Xu, Aiwei Liu, Xuming Hu, Lijie Wen, Hui Xiong,
- Abstract summary: This work defines two misuse scenarios for open-source large language models (LLMs)<n>We explore the application of inference-time watermark distillation and backdoor watermarking in these contexts.<n>Our experiments reveal that backdoor watermarking could effectively detect IP Violation, while inference-time watermark distillation is applicable in both scenarios.
- Score: 40.951792492059646
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As open-source large language models (LLMs) like Llama3 become more capable, it is crucial to develop watermarking techniques to detect their potential misuse. Existing watermarking methods either add watermarks during LLM inference, which is unsuitable for open-source LLMs, or primarily target classification LLMs rather than recent generative LLMs. Adapting these watermarks to open-source LLMs for misuse detection remains an open challenge. This work defines two misuse scenarios for open-source LLMs: intellectual property (IP) violation and LLM Usage Violation. Then, we explore the application of inference-time watermark distillation and backdoor watermarking in these contexts. We propose comprehensive evaluation methods to assess the impact of various real-world further fine-tuning scenarios on watermarks and the effect of these watermarks on LLM performance. Our experiments reveal that backdoor watermarking could effectively detect IP Violation, while inference-time watermark distillation is applicable in both scenarios but less robust to further fine-tuning and has a more significant impact on LLM performance compared to backdoor watermarking. Exploring more advanced watermarking methods for open-source LLMs to detect their misuse should be an important future direction.
Related papers
- Toward Breaking Watermarks in Distortion-free Large Language Models [11.922206306917435]
We show that it is possible to "compromise" the LLM and carry out a "spoofing" attack.
Specifically, we propose a mixed integer linear programming framework that accurately estimates the secret key used for watermarking.
arXiv Detail & Related papers (2025-02-25T19:52:55Z) - Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
This work is the first to investigate the imperceptibility of watermarked Large Language Models (LLMs)<n>We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts.<n> Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts.
arXiv Detail & Related papers (2024-10-04T06:01:27Z) - Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? [62.72729485995075]
We investigate the effectiveness of watermarking as a deterrent against the generation of copyrighted texts.
We find that watermarking adversely affects the success rate of Membership Inference Attacks (MIAs)
We propose an adaptive technique to improve the success rate of a recent MIA under watermarking.
arXiv Detail & Related papers (2024-07-24T16:53:09Z) - Waterfall: Framework for Robust and Scalable Text Watermarking and Provenance for LLMs [36.068335914828396]
We propose Waterfall, the first training-free framework for robust and scalable text watermarking.
Waterfall achieves significantly better scalability, robust verifiability, and computational efficiency compared to SOTA article-text watermarking methods.
arXiv Detail & Related papers (2024-07-05T10:51:33Z) - MarkLLM: An Open-Source Toolkit for LLM Watermarking [80.00466284110269]
MarkLLM is an open-source toolkit for implementing LLM watermarking algorithms.
For evaluation, MarkLLM offers a comprehensive suite of 12 tools spanning three perspectives, along with two types of automated evaluation pipelines.
arXiv Detail & Related papers (2024-05-16T12:40:01Z) - Topic-Based Watermarks for Large Language Models [46.71493672772134]
We propose a lightweight, topic-guided watermarking scheme for Large Language Model (LLM) output.<n>Our method achieves comparable perplexity to industry-leading systems, including Google's SynthID-Text.
arXiv Detail & Related papers (2024-04-02T17:49:40Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
This study assesses the impact of watermarking on different capabilities of large language models (LLMs) from a cognitive science lens.
We introduce Watermarking with Mutual Exclusion (WatME) to seamlessly integrate watermarks.
arXiv Detail & Related papers (2023-11-16T11:58:31Z) - Turning Your Strength into Watermark: Watermarking Large Language Model via Knowledge Injection [66.26348985345776]
We propose a novel watermarking method for large language models (LLMs) based on knowledge injection.
In the watermark embedding stage, we first embed the watermarks into the selected knowledge to obtain the watermarked knowledge.
In the watermark extraction stage, questions related to the watermarked knowledge are designed, for querying the suspect LLM.
Experiments show that the watermark extraction success rate is close to 100% and demonstrate the effectiveness, fidelity, stealthiness, and robustness of our proposed method.
arXiv Detail & Related papers (2023-11-16T03:22:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.