Digital Transformation in the Petrochemical Industry -- Challenges and Opportunities in the Implementation of {IoT} Technologies
- URL: http://arxiv.org/abs/2503.04749v1
- Date: Thu, 06 Feb 2025 23:50:10 GMT
- Title: Digital Transformation in the Petrochemical Industry -- Challenges and Opportunities in the Implementation of {IoT} Technologies
- Authors: Noel Portillo,
- Abstract summary: The petrochemical industry faces significant technological, environmental, occupational safety, and financial challenges.<n>Since its emergence in the 1920s, technologies that were once innovative have now become obsolete.<n>This paper addresses the challenges and opportunities presented by the research, development, and implementation of these technologies in the industry.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The petrochemical industry faces significant technological, environmental, occupational safety, and financial challenges. Since its emergence in the 1920s, technologies that were once innovative have now become obsolete. However, factors such as the protection of trade secrets in industrial processes, limited budgets for research and development, doubts about the reliability of new technologies, and resistance to change from decision-makers have hindered the adoption of new approaches, such as the use of IoT devices. This paper addresses the challenges and opportunities presented by the research, development, and implementation of these technologies in the industry. It also analyzes the investment in research and development made by companies in the sector in recent years and provides a review of current research and implementations related to Industry 4.0.
Related papers
- From Analog to Digital -- Successful Implementation of IoT Solutions in the Petrochemical Industry [0.0]
The project was carried out with the collaboration of specialists in equipment handling.<n>The methodology included the incorporation of IoT sensors for real-time monitoring, an automated control system, and the digitization of key processes.<n>Preliminary results indicate improvements in the precision of operational control and the ability for remote supervision.
arXiv Detail & Related papers (2025-02-07T21:41:57Z) - System Reliability Engineering in the Age of Industry 4.0: Challenges and Innovations [2.7332305169992135]
Condition-based monitoring and predictive maintenance are examples of key advancements.
We focus on smart manufacturing and automotive engineering applications with sensor-based monitoring and driver assistance systems.
arXiv Detail & Related papers (2024-10-30T12:00:29Z) - Towards Sustainable IoT: Challenges, Solutions, and Future Directions for Device Longevity [0.0]
This study explores the various complex difficulties which contributed to the early decommissioning of IoT devices.
By examining factors such as security vulnerabilities, user awareness gaps, and the influence of fashion-driven technology trends, the paper underscores the need for legislative interventions.
arXiv Detail & Related papers (2024-05-26T04:05:01Z) - When Industry meets Trustworthy AI: A Systematic Review of AI for
Industry 5.0 [0.0]
We focus on analysing the current paradigm in which industry evolves, making it more sustainable and Trustworthy.
In Industry 5.0, Artificial Intelligence (AI) is used to build services from a sustainable, human-centric and resilient perspective.
arXiv Detail & Related papers (2024-03-05T15:49:33Z) - Survey on Foundation Models for Prognostics and Health Management in
Industrial Cyber-Physical Systems [1.1034992901877594]
Large-scale foundation models (LFMs) like BERT and GPT signifies a significant advancement in AI technology.
ChatGPT stands as a remarkable accomplishment within this research paradigm, harboring potential for General Artificial Intelligence.
Considering the ongoing enhancement in data acquisition technology and data processing capability, LFMs are anticipated to assume a crucial role in the PHM domain of ICPS.
arXiv Detail & Related papers (2023-12-11T09:58:46Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Digital Twins in Wind Energy: Emerging Technologies and
Industry-Informed Future Directions [75.81393574964038]
This article presents a comprehensive overview of the digital twin technology and its capability levels, with a specific focus on its applications in the wind energy industry.
It consolidates the definitions of digital twin and its capability levels on a scale from 0-5; 0-standalone, 1-descriptive, 2-diagnostic, 3-predictive, 4-prescriptive, 5-autonomous.
arXiv Detail & Related papers (2023-04-16T18:38:28Z) - Towards a Taxonomy of Industrial Challenges and Enabling Technologies in
Industry 4.0 [0.0]
This article proposes a mixed approach of humanistic and engineering techniques applied to the technological and enterprise fields.
The study's results are represented by a taxonomy in which industrial challenges and I4.0-focused technologies are categorized and connected.
This taxonomy also formed the basis for creating a public web platform where industrial practitioners can identify candidate solutions for an industrial challenge.
arXiv Detail & Related papers (2022-11-29T19:52:36Z) - Federated Learning for Industrial Internet of Things in Future
Industries [106.13524161081355]
The Industrial Internet of Things (IIoT) offers promising opportunities to transform the operation of industrial systems.
Recently, artificial intelligence (AI) has been widely utilized for realizing intelligent IIoT applications.
Federated Learning (FL) is particularly attractive for intelligent IIoT networks by coordinating multiple IIoT devices and machines to perform AI training at the network edge.
arXiv Detail & Related papers (2021-05-31T01:02:59Z) - Qlib: An AI-oriented Quantitative Investment Platform [86.8580406876954]
AI technologies have raised new challenges to the quantitative investment system.
Qlib aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.
arXiv Detail & Related papers (2020-09-22T12:57:10Z) - Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information [91.3755431537592]
We present an overview of our current research activities concerning the development of new algorithms for route planning problems.
The research so far has focused in particular on the Euclidean Traveling Salesperson Problem (Euclidean TSP)
The aim is to exploit the results obtained also to other problems of the same category, such as the Euclidean Vehicle Problem (Euclidean VRP), in the future.
arXiv Detail & Related papers (2020-09-22T00:51:45Z) - Deep Technology Tracing for High-tech Companies [67.86308971806322]
We develop a novel data-driven solution, i.e., Deep Technology Forecasting (DTF) framework, to automatically find the most possible technology directions customized to each high-tech company.
DTF consists of three components: Potential Competitor Recognition (PCR), Collaborative Technology Recognition (CTR), and Deep Technology Tracing (DTT) neural network.
arXiv Detail & Related papers (2020-01-02T07:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.