Analyzing the temporal dynamics of linguistic features contained in misinformation
- URL: http://arxiv.org/abs/2503.04786v2
- Date: Mon, 10 Mar 2025 01:43:38 GMT
- Title: Analyzing the temporal dynamics of linguistic features contained in misinformation
- Authors: Erik J Schlicht,
- Abstract summary: This study uses natural language processing to analyze PolitiFact statements spanning between 2010 and 2024.<n>The results show that statement sentiment has decreased significantly over time, reflecting a generally more negative tone in PolitiFact statements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Consumption of misinformation can lead to negative consequences that impact the individual and society. To help mitigate the influence of misinformation on human beliefs, algorithmic labels providing context about content accuracy and source reliability have been developed. Since the linguistic features used by algorithms to estimate information accuracy can change across time, it is important to understand their temporal dynamics. As a result, this study uses natural language processing to analyze PolitiFact statements spanning between 2010 and 2024 to quantify how the sources and linguistic features of misinformation change between five-year time periods. The results show that statement sentiment has decreased significantly over time, reflecting a generally more negative tone in PolitiFact statements. Moreover, statements associated with misinformation realize significantly lower sentiment than accurate information. Additional analysis shows that recent time periods are dominated by sources from online social networks and other digital forums, such as blogs and viral images, that contain high levels of misinformation containing negative sentiment. In contrast, most statements during early time periods are attributed to individual sources (i.e., politicians) that are relatively balanced in accuracy ratings and contain statements with neutral or positive sentiment. Named-entity recognition was used to identify that presidential incumbents and candidates are relatively more prevalent in statements containing misinformation, while US states tend to be present in accurate information. Finally, entity labels associated with people and organizations are more common in misinformation, while accurate statements are more likely to contain numeric entity labels, such as percentages and dates.
Related papers
- Characteristics of Political Misinformation Over the Past Decade [0.0]
This paper uses natural language processing to find common characteristics of political misinformation over a twelve year period.
The results show that misinformation has increased dramatically in recent years and that it has increasingly started to be shared from sources with primary information modalities of text and images.
It was discovered that statements expressing misinformation contain more negative sentiment than accurate information.
arXiv Detail & Related papers (2024-11-09T09:12:39Z) - Locating Information Gaps and Narrative Inconsistencies Across Languages: A Case Study of LGBT People Portrayals on Wikipedia [49.80565462746646]
We introduce the InfoGap method -- an efficient and reliable approach to locating information gaps and inconsistencies in articles at the fact level.
We evaluate InfoGap by analyzing LGBT people's portrayals, across 2.7K biography pages on English, Russian, and French Wikipedias.
arXiv Detail & Related papers (2024-10-05T20:40:49Z) - Understanding Position Bias Effects on Fairness in Social Multi-Document Summarization [1.9950682531209158]
We investigate the effect of group ordering in input documents when summarizing tweets from three linguistic communities.
Our results suggest that position bias manifests differently in social multi-document summarization.
arXiv Detail & Related papers (2024-05-03T00:19:31Z) - Correcting misinformation on social media with a large language model [14.69780455372507]
Real-world misinformation, often multimodal, can be misleading using diverse tactics like conflating correlation with causation.
Such misinformation is severely understudied, challenging to address, and harms various social domains, particularly on social media.
We propose MUSE, an LLM augmented with access to and credibility evaluation of up-to-date information.
arXiv Detail & Related papers (2024-03-17T10:59:09Z) - Quantifying the redundancy between prosody and text [67.07817268372743]
We use large language models to estimate how much information is redundant between prosody and the words themselves.
We find a high degree of redundancy between the information carried by the words and prosodic information across several prosodic features.
Still, we observe that prosodic features can not be fully predicted from text, suggesting that prosody carries information above and beyond the words.
arXiv Detail & Related papers (2023-11-28T21:15:24Z) - Lost in Translation -- Multilingual Misinformation and its Evolution [52.07628580627591]
This paper investigates the prevalence and dynamics of multilingual misinformation through an analysis of over 250,000 unique fact-checks spanning 95 languages.
We find that while the majority of misinformation claims are only fact-checked once, 11.7%, corresponding to more than 21,000 claims, are checked multiple times.
Using fact-checks as a proxy for the spread of misinformation, we find 33% of repeated claims cross linguistic boundaries.
arXiv Detail & Related papers (2023-10-27T12:21:55Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
This work provides a characterization of the interaction patterns within Gab around the COVID-19 topic.
We find that there are no strong statistical differences in the social response to questionable and reliable content.
Our results provide insights toward the understanding of coordinated inauthentic behavior and on the early-warning of information operation.
arXiv Detail & Related papers (2020-06-03T11:34:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.