Characteristics of Political Misinformation Over the Past Decade
- URL: http://arxiv.org/abs/2411.06122v1
- Date: Sat, 09 Nov 2024 09:12:39 GMT
- Title: Characteristics of Political Misinformation Over the Past Decade
- Authors: Erik J Schlicht,
- Abstract summary: This paper uses natural language processing to find common characteristics of political misinformation over a twelve year period.
The results show that misinformation has increased dramatically in recent years and that it has increasingly started to be shared from sources with primary information modalities of text and images.
It was discovered that statements expressing misinformation contain more negative sentiment than accurate information.
- Score: 0.0
- License:
- Abstract: Although misinformation tends to spread online, it can have serious real-world consequences. In order to develop automated tools to detect and mitigate the impact of misinformation, researchers must leverage algorithms that can adapt to the modality (text, images and video), the source, and the content of the false information. However, these characteristics tend to change dynamically across time, making it challenging to develop robust algorithms to fight misinformation spread. Therefore, this paper uses natural language processing to find common characteristics of political misinformation over a twelve year period. The results show that misinformation has increased dramatically in recent years and that it has increasingly started to be shared from sources with primary information modalities of text and images (e.g., Facebook and Instagram), although video sharing sources containing misinformation are starting to increase (e.g., TikTok). Moreover, it was discovered that statements expressing misinformation contain more negative sentiment than accurate information. However, the sentiment associated with both accurate and inaccurate information has trended downward, indicating a generally more negative tone in political statements across time. Finally, recurring misinformation categories were uncovered that occur over multiple years, which may imply that people tend to share inaccurate statements around information they fear or don't understand (Science and Medicine, Crime, Religion), impacts them directly (Policy, Election Integrity, Economic) or Public Figures who are salient in their daily lives. Together, it is hoped that these insights will assist researchers in developing algorithms that are temporally invariant and capable of detecting and mitigating misinformation across time.
Related papers
- Measuring Falseness in News Articles based on Concealment and Overstatement [5.383724566787227]
This research investigates the extent of misinformation in certain journalistic articles.
It aims to measure misinformation using two metrics (concealment and overstatement) to explore how information is interpreted as false.
arXiv Detail & Related papers (2024-07-31T20:45:56Z) - AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild [1.4193873432298625]
We show the results of a two-year study using human raters to annotate online media-based misinformation.
We show the rise of generative AI-based content in misinformation claims.
We also show "simple" methods dominated historically, particularly context manipulations.
arXiv Detail & Related papers (2024-05-19T23:05:53Z) - Correcting misinformation on social media with a large language model [14.69780455372507]
Real-world misinformation, often multimodal, can be misleading using diverse tactics like conflating correlation with causation.
Such misinformation is severely understudied, challenging to address, and harms various social domains, particularly on social media.
We propose MUSE, an LLM augmented with access to and credibility evaluation of up-to-date information.
arXiv Detail & Related papers (2024-03-17T10:59:09Z) - News and Misinformation Consumption in Europe: A Longitudinal
Cross-Country Perspective [49.1574468325115]
This study investigated information consumption in four European countries.
It analyzed three years of Twitter activity from news outlet accounts in France, Germany, Italy, and the UK.
Results indicate that reliable sources dominate the information landscape, although unreliable content is still present across all countries.
arXiv Detail & Related papers (2023-11-09T16:22:10Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
Recent advances in deep learning, particularly deep generative models, open the doors for producing perceptually convincing images and videos at a low cost.
This paper provides a comprehensive review of the current media tampering detection approaches, and discusses the challenges and trends in this field for future research.
arXiv Detail & Related papers (2022-12-12T02:54:08Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
We argue that when misinformation proliferates, this happens because the social media environment enables adherence to misinformation.
We make the case that polarization and misinformation adherence are closely tied.
arXiv Detail & Related papers (2022-06-30T12:34:24Z) - An Agenda for Disinformation Research [3.083055913556838]
Disinformation erodes trust in the socio-political institutions that are the fundamental fabric of democracy.
The distribution of false, misleading, or inaccurate information with the intent to deceive is an existential threat to the United States.
New tools and approaches must be developed to leverage these affordances to understand and address this growing challenge.
arXiv Detail & Related papers (2020-12-15T19:32:36Z) - Information Consumption and Social Response in a Segregated Environment:
the Case of Gab [74.5095691235917]
This work provides a characterization of the interaction patterns within Gab around the COVID-19 topic.
We find that there are no strong statistical differences in the social response to questionable and reliable content.
Our results provide insights toward the understanding of coordinated inauthentic behavior and on the early-warning of information operation.
arXiv Detail & Related papers (2020-06-03T11:34:25Z) - Mining Disinformation and Fake News: Concepts, Methods, and Recent
Advancements [55.33496599723126]
disinformation including fake news has become a global phenomenon due to its explosive growth.
Despite the recent progress in detecting disinformation and fake news, it is still non-trivial due to its complexity, diversity, multi-modality, and costs of fact-checking or annotation.
arXiv Detail & Related papers (2020-01-02T21:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.