Tackling Vision Language Tasks Through Learning Inner Monologues
- URL: http://arxiv.org/abs/2308.09970v1
- Date: Sat, 19 Aug 2023 10:10:49 GMT
- Title: Tackling Vision Language Tasks Through Learning Inner Monologues
- Authors: Diji Yang, Kezhen Chen, Jinmeng Rao, Xiaoyuan Guo, Yawen Zhang, Jie
Yang, Yi Zhang
- Abstract summary: We propose a novel approach, Inner Monologue Multi-Modal Optimization (IMMO), to solve complex vision language problems.
IMMO simulates inner monologue processes, a cognitive process in which an individual engages in silent verbal communication with themselves.
The results suggest IMMO can enhance reasoning and explanation abilities, contributing to the more effective fusion of vision and language models.
- Score: 10.795616787372625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual language tasks require AI models to comprehend and reason with both
visual and textual content. Driven by the power of Large Language Models
(LLMs), two prominent methods have emerged: (1) the hybrid integration between
LLMs and Vision-Language Models (VLMs), where visual inputs are firstly
converted into language descriptions by VLMs, serving as inputs for LLMs to
generate final answer(s); (2) visual feature alignment in language space, where
visual inputs are encoded as embeddings and projected to LLMs' language space
via further supervised fine-tuning. The first approach provides light training
costs and interpretability but is hard to be optimized in an end-to-end
fashion. The second approach presents decent performance, but feature alignment
usually requires large amounts of training data and lacks interpretability. To
tackle this dilemma, we propose a novel approach, Inner Monologue Multi-Modal
Optimization (IMMO), to solve complex vision language problems by simulating
inner monologue processes, a cognitive process in which an individual engages
in silent verbal communication with themselves. We enable LLMs and VLMs to
interact through natural language conversation and propose to use a two-stage
training process to learn how to do the inner monologue (self-asking questions
and answering questions). IMMO is evaluated on two popular tasks and the
results suggest by emulating the cognitive phenomenon of internal dialogue, our
approach can enhance reasoning and explanation abilities, contributing to the
more effective fusion of vision and language models. More importantly, instead
of using predefined human-crafted monologues, IMMO learns this process within
the deep learning models, promising wider applicability to many different AI
problems beyond vision language tasks.
Related papers
- Language Model Can Listen While Speaking [17.584201137311286]
Listen-while-speaking language model (LSLM) is an end-to-end system equipped with both listening and speaking channels.
Our results highlight LSLM's capability to achieve duplex communication with minimal impact on existing systems.
arXiv Detail & Related papers (2024-08-05T16:47:22Z) - VILA: On Pre-training for Visual Language Models [74.08039416548209]
We study the design options for VLM pre-training through step-by-step controllable comparisons.
We build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-12-12T18:58:18Z) - Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects [11.117055725415446]
Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios.
The absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors.
We propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration.
arXiv Detail & Related papers (2023-12-08T09:02:45Z) - Think Before You Speak: Cultivating Communication Skills of Large Language Models via Inner Monologue [73.69510478736483]
Large language models (LLMs) can generate fluent, coherent, and diverse responses.
However, they lack a crucial ability: communication skills.
This article aims to empower LLMs with communication skills through inner monologues.
Experimental results show that the proposed CSIM strategy improves the backbone models and outperforms the baselines.
arXiv Detail & Related papers (2023-11-13T16:19:42Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks.
However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome.
In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue.
arXiv Detail & Related papers (2023-11-09T18:45:16Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
We introduce a well-designed visual tokenizer to translate the non-linguistic image into a sequence of discrete tokens like a foreign language.
The resulting visual tokens encompass high-level semantics worthy of a word and also support dynamic sequence length varying from the image.
This unification empowers LaVIT to serve as an impressive generalist interface to understand and generate multi-modal content simultaneously.
arXiv Detail & Related papers (2023-09-09T03:01:38Z) - TouchStone: Evaluating Vision-Language Models by Language Models [91.69776377214814]
We propose an evaluation method that uses strong large language models as judges to comprehensively evaluate the various abilities of LVLMs.
We construct a comprehensive visual dialogue dataset TouchStone, consisting of open-world images and questions, covering five major categories of abilities and 27 subtasks.
We demonstrate that powerful LVLMs, such as GPT-4, can effectively score dialogue quality by leveraging their textual capabilities alone.
arXiv Detail & Related papers (2023-08-31T17:52:04Z) - Spoken Language Intelligence of Large Language Models for Language
Learning [3.5924382852350902]
We focus on evaluating the efficacy of large language models (LLMs) in the realm of education.
We introduce a new multiple-choice question dataset to evaluate the effectiveness of LLMs in the aforementioned scenarios.
We also investigate the influence of various prompting techniques such as zero- and few-shot method.
We find that models of different sizes have good understanding of concepts in phonetics, phonology, and second language acquisition, but show limitations in reasoning for real-world problems.
arXiv Detail & Related papers (2023-08-28T12:47:41Z) - Language Is Not All You Need: Aligning Perception with Language Models [110.51362453720458]
We introduce Kosmos-1, a Multimodal Large Language Model (MLLM) that can perceive general modalities, learn in context, and follow instructions.
We train Kosmos-1 from scratch on web-scale multimodal corpora, including arbitrarily interleaved text and images, image-caption pairs, and text data.
Experimental results show that Kosmos-1 achieves impressive performance on (i) language understanding, generation, and even OCR-free NLP.
We also show that MLLMs can benefit from cross-modal transfer, i.e., transfer knowledge from language to multimodal, and from multimodal to language
arXiv Detail & Related papers (2023-02-27T18:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.