論文の概要: Cyber for AI at SemEval-2025 Task 4: Forgotten but Not Lost: The Balancing Act of Selective Unlearning in Large Language Models
- arxiv url: http://arxiv.org/abs/2503.04795v1
- Date: Sun, 02 Mar 2025 07:58:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 08:47:07.924265
- Title: Cyber for AI at SemEval-2025 Task 4: Forgotten but Not Lost: The Balancing Act of Selective Unlearning in Large Language Models
- Title(参考訳): SemEval-2025 Task 4: Forgotten but not Lost: The Balancing Act of Selective Unlearning in Large Language Models
- Authors: Dinesh Srivasthav P, Bala Mallikarjunarao Garlapati,
- Abstract要約: 大きな言語モデル(LLM)は、プライバシ、倫理、コンプライアンスを維持する上での課題に直面します。
これらのモデルをスクラッチからリトレーニングすることは、計算不可能である。
この課題に対処するために、LLMにおける選択的アンラーニングの適用に焦点を当てる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) face significant challenges in maintaining privacy, ethics, and compliance, when sensitive or obsolete data must be selectively removed. Retraining these models from scratch is computationally infeasible, necessitating efficient alternatives. As part of the SemEval 2025 Task 4, this work focuses on the application of selective unlearning in LLMs to address this challenge. In this paper, we present our experiments and findings, primarily leveraging global weight modification to achieve an equilibrium between effectiveness of unlearning, knowledge retention, and target model's post-unlearning utility. We also detail the task-specific evaluation mechanism, results, and challenges. Our algorithms have achieved an aggregate score of 0.409 and 0.389 on the test set for 7B and 1B target models, respectively, demonstrating promising results in verifiable LLM unlearning.
- Abstract(参考訳): 大きな言語モデル(LLM)は、機密性や陳腐化したデータを選択的に削除する必要がある場合、プライバシ、倫理、コンプライアンスを維持する上で重大な課題に直面します。
これらのモデルをスクラッチからリトレーニングすることは、計算不可能であり、効率的な代替手段を必要とする。
SemEval 2025 Task 4の一部として、この課題に対処するためにLLMにおける選択的アンラーニングの適用に焦点を当てる。
本稿では,学習後モデルの有効性,知識保持,および学習後モデルの有効性の均衡を実現するために,主にグローバルな重み修正を活用する実験と結果を提案する。
また、タスク固有の評価メカニズム、結果、課題についても詳述する。
提案アルゴリズムは, 7B と 1B の目標モデルに対してそれぞれ0.409 と0.389 の総合スコアを達成し,検証可能な LLM の未学習において有望な結果を示した。
関連論文リスト
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
S$2$Rはモデルに推論時の自己検証と自己正当性を教えることによってLLM推論を強化する効率的なフレームワークである。
以上の結果から,Qwen2.5-math-7Bの精度は51.0%から81.6%に向上した。
論文 参考訳(メタデータ) (2025-02-18T13:40:22Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
大型言語モデル(LLM)は機密または著作権のあるコンテンツを記憶し、プライバシーと法的懸念を高める。
LLMの機械学習におけるいくつかの問題について議論し、可能なアプローチについての洞察を提供する。
論文 参考訳(メタデータ) (2024-10-10T16:56:05Z) - Learning to Unlearn for Robust Machine Unlearning [6.488418950340473]
学習過程を最適化する新しいLTU(Learning-to-Unlearn)フレームワークを提案する。
LTUは、モデルが一般化可能な知識を効果的に保存することを容易にするメタ最適化スキームを含んでいる。
また、記憶と忘れのための最適化トラジェクトリを整列するグラディエント調和戦略も導入する。
論文 参考訳(メタデータ) (2024-07-15T07:36:00Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
本稿では,大規模言語モデルにおける機械学習評価の精度向上を図る。
評価指標の堅牢性と、競合する目標間のトレードオフという、2つの重要な課題に対処します。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning [9.998859702421417]
マシン・アンラーニング(MU)は、選択したデータポイントがモデルの性能に与える影響を排除することを目的としている。
データ影響消去のための様々なMU手法にもかかわらず、評価は主にランダムなデータの忘れ方に焦点を当てている。
本稿では,影響消去の最も重要な課題を示すデータサブセットの同定を提案する。
論文 参考訳(メタデータ) (2024-03-12T06:50:32Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
学び アクティブラーニング(LAL)は、アクティブラーニング戦略自体を学ぶことを提案し、与えられた設定に適応できるようにする。
能動学習問題の対称性と独立性を利用した新しい分類法を提案する。
私たちのアプローチは、筋電図から学ぶことに基づいており、モデルに標準ではない目的に適応する能力を与えます。
論文 参考訳(メタデータ) (2023-09-11T14:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。