論文の概要: Exploring and Evaluating Multimodal Knowledge Reasoning Consistency of Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2503.04801v1
- Date: Mon, 03 Mar 2025 09:01:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 15:57:02.636300
- Title: Exploring and Evaluating Multimodal Knowledge Reasoning Consistency of Multimodal Large Language Models
- Title(参考訳): マルチモーダル大言語モデルのマルチモーダル知識推論一貫性の探索と評価
- Authors: Boyu Jia, Junzhe Zhang, Huixuan Zhang, Xiaojun Wan,
- Abstract要約: マルチモーダルな大言語モデル(MLLM)は、テキストとビジョンの理解を深め、大きなブレークスルーを達成した。
しかし、現在のMLLMは、マルチモーダルな知識推論において、これらのモダリティを効果的に統合する上での課題に直面している。
MLLMにおけるマルチモーダル知識推論における一貫性劣化の程度を解析・比較する。
- 参考スコア(独自算出の注目度): 52.569132872560814
- License:
- Abstract: In recent years, multimodal large language models (MLLMs) have achieved significant breakthroughs, enhancing understanding across text and vision. However, current MLLMs still face challenges in effectively integrating knowledge across these modalities during multimodal knowledge reasoning, leading to inconsistencies in reasoning outcomes. To systematically explore this issue, we propose four evaluation tasks and construct a new dataset. We conduct a series of experiments on this dataset to analyze and compare the extent of consistency degradation in multimodal knowledge reasoning within MLLMs. Based on the experimental results, we identify factors contributing to the observed degradation in consistency. Our research provides new insights into the challenges of multimodal knowledge reasoning and offers valuable guidance for future efforts aimed at improving MLLMs.
- Abstract(参考訳): 近年,マルチモーダル大規模言語モデル (MLLM) は,テキストや視覚の理解を深めるなど,画期的な進歩を遂げている。
しかし、現在のMLLMは、マルチモーダルな知識推論において、これらのモダリティを効果的に統合する際の課題に直面しており、結果の推論に矛盾が生じている。
この問題を体系的に調査するために,4つの評価タスクを提案し,新しいデータセットを構築した。
我々は,MLLM内の多モード知識推論における一貫性劣化の程度を解析・比較するために,このデータセット上で一連の実験を行った。
実験結果から, 観測結果の整合性劣化に寄与する因子を同定した。
本研究は,マルチモーダル知識推論の課題に対する新たな洞察を提供し,MLLMの改善を目的とした今後の取り組みに有用なガイダンスを提供する。
関連論文リスト
- Exploring Large Language Models for Multimodal Sentiment Analysis: Challenges, Benchmarks, and Future Directions [0.0]
マルチモーダル・アスペクトベース感性分析(MABSA)は、テキストや画像を含む多モーダル情報からアスペクト項とその対応する感情極性を抽出することを目的としている。
従来の教師付き学習手法はこの課題において有効性を示したが、大規模言語モデル(LLM)のMABSAへの適応性は未だ不明である。
Llama2、LLaVA、ChatGPTなどのLLMの最近の進歩は、一般的なタスクにおいて強力な能力を示しているが、MABSAのような複雑できめ細かなシナリオでは、その性能が過小評価されている。
論文 参考訳(メタデータ) (2024-11-23T02:17:10Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio [118.75449542080746]
本稿では,大規模マルチモーダルモデル(LMM)における幻覚に関する最初の系統的研究について述べる。
本研究は,幻覚に対する2つの重要な要因を明らかにした。
私たちの研究は、モダリティ統合の不均衡やトレーニングデータからのバイアスなど、重要な脆弱性を強調し、モダリティ間のバランスの取れた学習の必要性を強調した。
論文 参考訳(メタデータ) (2024-10-16T17:59:02Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Surveying the MLLM Landscape: A Meta-Review of Current Surveys [17.372501468675303]
MLLM(Multimodal Large Language Models)は、人工知能分野における変革の原動力となっている。
本研究の目的は,MLLMのベンチマークテストと評価方法の体系的レビューを提供することである。
論文 参考訳(メタデータ) (2024-09-17T14:35:38Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
我々は,新しいマルチモーダル命令データ進化フレームワークであるMMEvolを提案する。
MMEvolは、きめ細かい知覚、認知的推論、相互作用の進化の洗練された組み合わせによって、データ品質を反復的に改善する。
提案手法は,9つのタスクにおいて,最先端モデルに比べて有意に少ない精度でSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-09-09T17:44:00Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - MIKE: A New Benchmark for Fine-grained Multimodal Entity Knowledge
Editing [21.760293271882997]
マルチモーダル知識編集は、マルチモーダル大言語モデル(MLLM)の能力向上における重要な進歩である
現在のベンチマークは主に粗粒度知識に焦点が当てられており、細粒度(FG)マルチモーダル実体知識の複雑さはほとんど解明されていない。
このギャップを埋めるために、我々はFGマルチモーダルエンティティ知識編集用に特別に設計された総合的なベンチマークとデータセットであるMIKEを紹介する。
論文 参考訳(メタデータ) (2024-02-18T07:15:03Z) - Exploring the Reasoning Abilities of Multimodal Large Language Models
(MLLMs): A Comprehensive Survey on Emerging Trends in Multimodal Reasoning [44.12214030785711]
マルチモーダル大言語モデル(MLLM)のフロンティアを分類・記述し、既存のマルチモーダル推論の評価プロトコルについて概観する。
本稿では,MLLMの推論集約型タスクへの適用動向を紹介するとともに,現在の実践と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-01-10T15:29:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。