Self-Supervised Z-Slice Augmentation for 3D Bio-Imaging via Knowledge Distillation
- URL: http://arxiv.org/abs/2503.04843v2
- Date: Mon, 17 Mar 2025 21:52:46 GMT
- Title: Self-Supervised Z-Slice Augmentation for 3D Bio-Imaging via Knowledge Distillation
- Authors: Alessandro Pasqui, Sajjad Mahdavi, Benoit Vianay, Alexandra Colin, Alex McDougall, Rémi Dumollard, Yekaterina A. Miroshnikova, Elsa Labrune, Hervé Turlier,
- Abstract summary: ZAugNet is a fast, accurate, and self-supervised deep learning method for enhancing z-resolution in biological images.<n>By performing nonlinear distances between consecutive slices, ZAugNet effectively doubles resolution with each iteration.<n>ZAugNet+ is an extended version enabling continuous prediction at arbitrary distances.
- Score: 65.46249968484794
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Three-dimensional biological microscopy has significantly advanced our understanding of complex biological structures. However, limitations due to microscopy techniques, sample properties or phototoxicity often result in poor z-resolution, hindering accurate cellular measurements. Here, we introduce ZAugNet, a fast, accurate, and self-supervised deep learning method for enhancing z-resolution in biological images. By performing nonlinear interpolation between consecutive slices, ZAugNet effectively doubles resolution with each iteration. Compared on several microscopy modalities and biological objects, it outperforms competing methods on most metrics. Our method leverages a generative adversarial network (GAN) architecture combined with knowledge distillation to maximize prediction speed without compromising accuracy. We also developed ZAugNet+, an extended version enabling continuous interpolation at arbitrary distances, making it particularly useful for datasets with nonuniform slice spacing. Both ZAugNet and ZAugNet+ provide high-performance, scalable z-slice augmentation solutions for large-scale 3D imaging. They are available as open-source frameworks in PyTorch, with an intuitive Colab notebook interface for easy access by the scientific community.
Related papers
- Enhancing Retinal Vascular Structure Segmentation in Images With a Novel
Design Two-Path Interactive Fusion Module Model [6.392575673488379]
We introduce Swin-Res-Net, a specialized module designed to enhance the precision of retinal vessel segmentation.
Swin-Res-Net utilizes the Swin transformer which uses shifted windows with displacement for partitioning.
Our proposed architecture produces outstanding results, either meeting or surpassing those of other published models.
arXiv Detail & Related papers (2024-03-03T01:36:11Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.
LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.
We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - NexToU: Efficient Topology-Aware U-Net for Medical Image Segmentation [3.8336080345323227]
CNN and Transformer variants have emerged as the leading medical image segmentation backbones.
We propose NexToU, a novel hybrid architecture for medical image segmentation.
Our method consistently outperforms other state-of-the-art (SOTA) architectures.
arXiv Detail & Related papers (2023-05-25T10:18:57Z) - {\mu}Split: efficient image decomposition for microscopy data [50.794670705085835]
muSplit is a dedicated approach for trained image decomposition in the context of fluorescence microscopy images.
We introduce lateral contextualization (LC), a novel meta-architecture that enables the memory efficient incorporation of large image-context.
We apply muSplit to five decomposition tasks, one on a synthetic dataset, four others derived from real microscopy data.
arXiv Detail & Related papers (2022-11-23T11:26:24Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - DVNet: A Memory-Efficient Three-Dimensional CNN for Large-Scale
Neurovascular Reconstruction [1.9199289015460215]
We present a fully-convolutional, deep, and densely-connected encoder-decoder for pixel-wise semantic segmentation.
The proposed network provides superior performance for semantic segmentation problems applied to open-source benchmarks.
arXiv Detail & Related papers (2020-02-04T22:39:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.