NexToU: Efficient Topology-Aware U-Net for Medical Image Segmentation
- URL: http://arxiv.org/abs/2305.15911v1
- Date: Thu, 25 May 2023 10:18:57 GMT
- Title: NexToU: Efficient Topology-Aware U-Net for Medical Image Segmentation
- Authors: Pengcheng Shi, Xutao Guo, Yanwu Yang, Chenfei Ye and Ting Ma
- Abstract summary: CNN and Transformer variants have emerged as the leading medical image segmentation backbones.
We propose NexToU, a novel hybrid architecture for medical image segmentation.
Our method consistently outperforms other state-of-the-art (SOTA) architectures.
- Score: 3.8336080345323227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNN) and Transformer variants have emerged as
the leading medical image segmentation backbones. Nonetheless, due to their
limitations in either preserving global image context or efficiently processing
irregular shapes in visual objects, these backbones struggle to effectively
integrate information from diverse anatomical regions and reduce
inter-individual variability, particularly for the vasculature. Motivated by
the successful breakthroughs of graph neural networks (GNN) in capturing
topological properties and non-Euclidean relationships across various fields,
we propose NexToU, a novel hybrid architecture for medical image segmentation.
NexToU comprises improved Pool GNN and Swin GNN modules from Vision GNN (ViG)
for learning both global and local topological representations while minimizing
computational costs. To address the containment and exclusion relationships
among various anatomical structures, we reformulate the topological interaction
(TI) module based on the nature of binary trees, rapidly encoding the
topological constraints into NexToU. Extensive experiments conducted on three
datasets (including distinct imaging dimensions, disease types, and imaging
modalities) demonstrate that our method consistently outperforms other
state-of-the-art (SOTA) architectures. All the code is publicly available at
https://github.com/PengchengShi1220/NexToU.
Related papers
- TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural
Networks [31.87960207119459]
We propose an improved methodology that leverages the spatial context of tiles for more robust and smoother segmentation.
To address the irregular shapes of tiles, we utilize Graph Neural Networks (GNNs) to propagate context information across neighboring regions.
Our findings demonstrate that context-aware GNN algorithms can robustly find tumor demarcations on HSI images.
arXiv Detail & Related papers (2023-11-20T14:07:38Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
We introduce a novel model that combines GNNs and edge convolution, leveraging the interconnectedness of RGB channel feature values to strongly represent connections between crucial graph nodes.
Our proposed model performs on par with state-of-the-art Deep Neural Networks (DNNs) but does so with 1000 times fewer parameters, resulting in reduced training time and data requirements.
arXiv Detail & Related papers (2023-07-24T13:39:21Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - How GNNs Facilitate CNNs in Mining Geometric Information from
Large-Scale Medical Images [2.2699159408903484]
We propose a fusion framework for enhancing the global image-level representation captured by convolutional neural networks (CNNs)
We evaluate our fusion strategies on histology datasets curated from large patient cohorts of colorectal and gastric cancers.
arXiv Detail & Related papers (2022-06-15T15:27:48Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Improving anatomical plausibility in medical image segmentation via
hybrid graph neural networks: applications to chest x-ray analysis [3.3382651833270587]
We introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures.
A novel image-to-graph skip connection layer allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy.
arXiv Detail & Related papers (2022-03-21T13:37:23Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
We propose a pixel-wise sparse graph reasoning (PSGR) module to enhance the modeling of long-range dependencies for COVID-19 infected region segmentation in CT images.
The PSGR module avoids imprecise pixel-to-node projections and preserves the inherent information of each pixel for global reasoning.
The solution has been evaluated against four widely-used segmentation models on three public datasets.
arXiv Detail & Related papers (2021-08-09T04:58:23Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.