LVLM-Compress-Bench: Benchmarking the Broader Impact of Large Vision-Language Model Compression
- URL: http://arxiv.org/abs/2503.04982v1
- Date: Thu, 06 Mar 2025 21:21:18 GMT
- Title: LVLM-Compress-Bench: Benchmarking the Broader Impact of Large Vision-Language Model Compression
- Authors: Souvik Kundu, Anahita Bhiwandiwalla, Sungduk Yu, Phillip Howard, Tiep Le, Sharath Nittur Sridhar, David Cobbley, Hao Kang, Vasudev Lal,
- Abstract summary: We present LVLM-Compress-Bench, a framework to study the broad impact of compression on the generative performance of LVLMs with multi-modal input driven tasks.<n>We use four LVLM variants of the popular LLaVA framework to present our analysis via integrating various state-of-the-art KV and weight compression methods.<n>Our framework demonstrates the compression impact on both general and critical metrics leveraging a combination of real world and synthetic datasets.
- Score: 7.67622140575795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent efforts in understanding the compression impact on large language models (LLMs) in terms of their downstream task performance and trustworthiness on relatively simpler uni-modal benchmarks (for example, question answering, common sense reasoning), their detailed study on multi-modal Large Vision-Language Models (LVLMs) is yet to be unveiled. Towards mitigating this gap, we present LVLM-Compress-Bench, a framework to first thoroughly study the broad impact of compression on the generative performance of LVLMs with multi-modal input driven tasks. In specific, we consider two major classes of compression for autoregressive models, namely KV cache and weight compression, for the dynamically growing intermediate cache and static weights, respectively. We use four LVLM variants of the popular LLaVA framework to present our analysis via integrating various state-of-the-art KV and weight compression methods including uniform, outlier-reduced, and group quantization for the KV cache and weights. With this framework we demonstrate on ten different multi-modal datasets with different capabilities including recognition, knowledge, language generation, spatial awareness, visual reasoning, hallucination and visual illusion identification, toxicity, stereotypes and bias. In specific, our framework demonstrates the compression impact on both general and ethically critical metrics leveraging a combination of real world and synthetic datasets to encompass diverse societal intersectional attributes. Extensive experimental evaluations yield diverse and intriguing observations on the behavior of LVLMs at different quantization budget of KV and weights, in both maintaining and losing performance as compared to the baseline model with FP16 data format. Code will be open-sourced at https://github.com/opengear-project/LVLM-compress-bench.
Related papers
- DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)
Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.
Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference [11.73134417321505]
We propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference.
We show that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache.
arXiv Detail & Related papers (2025-03-31T11:13:18Z) - LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning [39.54891426369773]
Trade-offs between model size, architecture, and performance remain underexplored.
In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones.
To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures.
arXiv Detail & Related papers (2025-03-19T18:10:12Z) - Global Compression Commander: Plug-and-Play Inference Acceleration for High-Resolution Large Vision-Language Models [28.311125014789905]
"Global Compression Commander" (i.e., GlobalCom$2$) is a novel plug-and-play token compression framework for HR-LVLMs.
Our experiments show that GlobalCom$2$ maintains over 90% performance while compressing 90% visual tokens.
arXiv Detail & Related papers (2025-01-09T11:57:58Z) - Large Language Models for Lossless Image Compression: Next-Pixel Prediction in Language Space is All You Need [53.584140947828004]
Language large model (LLM) with unprecedented intelligence is a general-purpose lossless compressor for various data modalities.
We propose P$2$-LLM, a next-pixel prediction-based LLM, which integrates various elaborated insights and methodologies.
Experiments on benchmark datasets demonstrate that P$2$-LLM can beat SOTA classical and learned codecs.
arXiv Detail & Related papers (2024-11-19T12:15:40Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.<n>Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.<n>We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - A Survey on Transformer Compression [84.18094368700379]
Transformer plays a vital role in the realms of natural language processing (NLP) and computer vision (CV)
Model compression methods reduce the memory and computational cost of Transformer.
This survey provides a comprehensive review of recent compression methods, with a specific focus on their application to Transformer-based models.
arXiv Detail & Related papers (2024-02-05T12:16:28Z) - ASVD: Activation-aware Singular Value Decomposition for Compressing Large Language Models [28.231997641388343]
We introduce a new post-training compression paradigm for Large Language Models (LLMs)
We find that the challenges of this task stem from the distribution variance in the LLM activations and the sensitivity difference among various kinds of layers.
We propose a training-free approach called Activation-aware Singular Value Decomposition (ASVD)
arXiv Detail & Related papers (2023-12-10T08:41:24Z) - The Cost of Compression: Investigating the Impact of Compression on
Parametric Knowledge in Language Models [11.156816338995503]
Large language models (LLMs) provide faster inference, smaller memory footprints, and enables local deployment.
Two standard compression techniques are pruning and quantization, with the former eliminating redundant connections in model layers and the latter representing model parameters with fewer bits.
Existing research on LLM compression primarily focuses on performance in terms of general metrics like perplexity or downstream task accuracy.
More fine-grained metrics, such as those measuring parametric knowledge, remain significantly underexplored.
arXiv Detail & Related papers (2023-12-01T22:27:12Z) - SPHINX: The Joint Mixing of Weights, Tasks, and Visual Embeddings for
Multi-modal Large Language Models [86.478087039015]
We present a versatile multi-modal large language model (MLLM) with a joint mixing of model weights, tuning tasks, and visual embeddings.
Based on our proposed joint mixing, we propose an efficient strategy aiming to better capture fine-grained appearances of high-resolution images.
We hope our work may cast a light on the exploration of joint mixing in future MLLM research.
arXiv Detail & Related papers (2023-11-13T18:59:47Z) - LLMLingua: Compressing Prompts for Accelerated Inference of Large
Language Models [22.06402870816756]
Large language models (LLMs) have been applied in various applications due to their astonishing capabilities.
This paper presents LLMLingua, a coarse-to-fine prompt compression method that involves a budget controller to maintain semantic integrity.
We show that the proposed approach yields state-of-the-art performance and allows for up to 20x compression with little performance loss.
arXiv Detail & Related papers (2023-10-09T14:10:21Z) - In-context Autoencoder for Context Compression in a Large Language Model [70.7621953091318]
We propose the In-context Autoencoder (ICAE) to compress a long context into short compact memory slots.
ICAE is first pretrained using both autoencoding and language modeling objectives on massive text data.
arXiv Detail & Related papers (2023-07-13T17:59:21Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
We study two popular model compression techniques including knowledge distillation and pruning.
We show that compressed models are significantly less robust than their PLM counterparts on adversarial test sets.
We develop a regularization strategy for model compression based on sample uncertainty.
arXiv Detail & Related papers (2021-10-16T00:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.