DP-GTR: Differentially Private Prompt Protection via Group Text Rewriting
- URL: http://arxiv.org/abs/2503.04990v1
- Date: Thu, 06 Mar 2025 21:39:42 GMT
- Title: DP-GTR: Differentially Private Prompt Protection via Group Text Rewriting
- Authors: Mingchen Li, Heng Fan, Song Fu, Junhua Ding, Yunhe Feng,
- Abstract summary: We introduce DP-GTR, a novel three-stage framework that leverages local differential privacy (DP) and the composition theorem via group text rewriting.<n>Experiments on CommonSense QA and DocVQA demonstrate that DP-GTR outperforms existing approaches.<n>Our framework is compatible with existing rewriting techniques, serving as a plug-in to enhance privacy protection.
- Score: 16.861151219321737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt privacy is crucial, especially when using online large language models (LLMs), due to the sensitive information often contained within prompts. While LLMs can enhance prompt privacy through text rewriting, existing methods primarily focus on document-level rewriting, neglecting the rich, multi-granular representations of text. This limitation restricts LLM utilization to specific tasks, overlooking their generalization and in-context learning capabilities, thus hindering practical application. To address this gap, we introduce DP-GTR, a novel three-stage framework that leverages local differential privacy (DP) and the composition theorem via group text rewriting. DP-GTR is the first framework to integrate both document-level and word-level information while exploiting in-context learning to simultaneously improve privacy and utility, effectively bridging local and global DP mechanisms at the individual data point level. Experiments on CommonSense QA and DocVQA demonstrate that DP-GTR outperforms existing approaches, achieving a superior privacy-utility trade-off. Furthermore, our framework is compatible with existing rewriting techniques, serving as a plug-in to enhance privacy protection. Our code is publicly available at https://github.com/FatShion-FTD/DP-GTR for reproducibility.
Related papers
- Thinking Outside of the Differential Privacy Box: A Case Study in Text Privatization with Language Model Prompting [3.3916160303055567]
We discuss the restrictions that Differential Privacy (DP) integration imposes, as well as bring to light the challenges that such restrictions entail.
Our results demonstrate the need for more discussion on the usability of DP in NLP and its benefits over non-DP approaches.
arXiv Detail & Related papers (2024-10-01T14:46:15Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit.
We study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users.
arXiv Detail & Related papers (2024-06-20T13:54:32Z) - Differentially Private Synthetic Data via Foundation Model APIs 2: Text [56.13240830670327]
A lot of high-quality text data generated in the real world is private and cannot be shared or used freely due to privacy concerns.
We propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text.
Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines.
arXiv Detail & Related papers (2024-03-04T05:57:50Z) - ConfusionPrompt: Practical Private Inference for Online Large Language Models [3.8134804426693094]
State-of-the-art large language models (LLMs) are typically deployed as online services, requiring users to transmit detailed prompts to cloud servers.
We introduce ConfusionPrompt, a novel framework for private LLM inference that protects user privacy by decomposing the original prompt into smaller sub-prompts.
We show that ConfusionPrompt achieves significantly higher utility than local inference methods using open-source models and perturbation-based techniques.
arXiv Detail & Related papers (2023-12-30T01:26:42Z) - Silent Guardian: Protecting Text from Malicious Exploitation by Large Language Models [63.91178922306669]
We introduce Silent Guardian, a text protection mechanism against large language models (LLMs)
By carefully modifying the text to be protected, TPE can induce LLMs to first sample the end token, thus directly terminating the interaction.
We show that SG can effectively protect the target text under various configurations and achieve almost 100% protection success rate in some cases.
arXiv Detail & Related papers (2023-12-15T10:30:36Z) - DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer [57.04801796205638]
Large Language Models (LLMs) have emerged as dominant tools for various tasks.
However, concerns surrounding data privacy present obstacles due to the tuned prompts' dependency on sensitive private information.
We present Differentially-Private Offsite Prompt Tuning (DP-OPT) to address this challenge.
arXiv Detail & Related papers (2023-11-27T02:01:10Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - DP-BART for Privatized Text Rewriting under Local Differential Privacy [2.45626162429986]
We propose a new system 'DP-BART' that largely outperforms existing LDP systems.
Our approach uses a novel clipping method, iterative pruning, and further training of internal representations which drastically reduces the amount of noise required for DP guarantees.
arXiv Detail & Related papers (2023-02-15T13:07:34Z) - DP-Rewrite: Towards Reproducibility and Transparency in Differentially
Private Text Rewriting [2.465904360857451]
We introduce DP-Rewrite, an open-source framework for differentially private text rewriting.
Our system incorporates a variety of downstream datasets, models, pre-training procedures, and evaluation metrics.
We provide a set of experiments as a case study on the ADePT DP text rewriting system, detecting a privacy leak in its pre-training approach.
arXiv Detail & Related papers (2022-08-22T15:38:16Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
We study the contextual linear bandit problem with differential privacy (DP)
We show that it is possible to achieve a privacy/utility trade-off between JDP and LDP by leveraging the shuffle model of privacy.
Our result shows that it is possible to obtain a tradeoff between JDP and LDP by leveraging the shuffle model while preserving local privacy.
arXiv Detail & Related papers (2021-12-11T15:23:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.