FedMABench: Benchmarking Mobile Agents on Decentralized Heterogeneous User Data
- URL: http://arxiv.org/abs/2503.05143v1
- Date: Fri, 07 Mar 2025 04:52:20 GMT
- Title: FedMABench: Benchmarking Mobile Agents on Decentralized Heterogeneous User Data
- Authors: Wenhao Wang, Zijie Yu, Rui Ye, Jianqing Zhang, Siheng Chen, Yanfeng Wang,
- Abstract summary: FedMABench is the first benchmark for federated training and evaluation of mobile agents.<n>FedMABench features 6 datasets with 30+ subsets, 8 federated algorithms, 10+ base models, and over 800 apps across 5 categories.
- Score: 48.68048032554095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile agents have attracted tremendous research participation recently. Traditional approaches to mobile agent training rely on centralized data collection, leading to high cost and limited scalability. Distributed training utilizing federated learning offers an alternative by harnessing real-world user data, providing scalability and reducing costs. However, pivotal challenges, including the absence of standardized benchmarks, hinder progress in this field. To tackle the challenges, we introduce FedMABench, the first benchmark for federated training and evaluation of mobile agents, specifically designed for heterogeneous scenarios. FedMABench features 6 datasets with 30+ subsets, 8 federated algorithms, 10+ base models, and over 800 apps across 5 categories, providing a comprehensive framework for evaluating mobile agents across diverse environments. Through extensive experiments, we uncover several key insights: federated algorithms consistently outperform local training; the distribution of specific apps plays a crucial role in heterogeneity; and, even apps from distinct categories can exhibit correlations during training. FedMABench is publicly available at: https://github.com/wwh0411/FedMABench with the datasets at: https://huggingface.co/datasets/wwh0411/FedMABench.
Related papers
- Federated brain tumor segmentation: an extensive benchmark [2.515027627030043]
We propose an extensive benchmark of federated learning algorithms from all three classes on this task.
We show that some methods from each category can bring a slight performance improvement and potentially limit the final model(s) bias toward the predominant data distribution of the federation.
arXiv Detail & Related papers (2024-10-07T09:32:19Z) - FedLLM-Bench: Realistic Benchmarks for Federated Learning of Large Language Models [48.484485609995986]
Federated learning has enabled multiple parties to collaboratively train large language models without directly sharing their data (FedLLM)
There are currently no realistic datasets and benchmarks for FedLLM.
We propose FedLLM-Bench, which involves 8 training methods, 4 training datasets, and 6 evaluation metrics.
arXiv Detail & Related papers (2024-06-07T11:19:30Z) - Fed-MIWAE: Federated Imputation of Incomplete Data via Deep Generative
Models [5.373862368597948]
Federated learning allows for the training of machine learning models on multiple local datasets without requiring explicit data exchange.
Data pre-processing, including strategies for handling missing data, remains a major bottleneck in real-world federated learning deployment.
We propose Fed-MIWAE, a deep latent variable model for missing data imputation based on variational autoencoders.
arXiv Detail & Related papers (2023-04-17T08:14:08Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
Federated Learning (FL) enables training a global model without sharing the decentralized raw data stored on multiple devices to protect data privacy.
We propose a hierarchical synchronous FL framework, i.e., FedHiSyn, to tackle the problems of straggler effects and outdated models.
We evaluate the proposed framework based on MNIST, EMNIST, CIFAR10 and CIFAR100 datasets and diverse heterogeneous settings of devices.
arXiv Detail & Related papers (2022-06-21T17:23:06Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm.
We propose a data heterogeneous-robust FL approach, FedGSP, to address this challenge.
We show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-31T03:15:28Z) - FedMix: Approximation of Mixup under Mean Augmented Federated Learning [60.503258658382]
Federated learning (FL) allows edge devices to collectively learn a model without directly sharing data within each device.
Current state-of-the-art algorithms suffer from performance degradation as the heterogeneity of local data across clients increases.
We propose a new augmentation algorithm, named FedMix, which is inspired by a phenomenal yet simple data augmentation method, Mixup.
arXiv Detail & Related papers (2021-07-01T06:14:51Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.