phepy: Visual Benchmarks and Improvements for Out-of-Distribution Detectors
- URL: http://arxiv.org/abs/2503.05169v1
- Date: Fri, 07 Mar 2025 06:25:20 GMT
- Title: phepy: Visual Benchmarks and Improvements for Out-of-Distribution Detectors
- Authors: Juniper Tyree, Andreas Rupp, Petri S. Clusius, Michael H. Boy,
- Abstract summary: Testing OOD detection methods on real-world datasets is complicated by the ambiguity around which inputs are in-distribution (ID) or OOD.<n>We design a benchmark for OOD detection, which includes three novel and easily-visualisable toy examples.<n>We introduce two improvements, $t$-poking and OOD sample weighting, to make supervised detectors more precise at the ID-OOD boundary.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Applying machine learning to increasingly high-dimensional problems with sparse or biased training data increases the risk that a model is used on inputs outside its training domain. For such out-of-distribution (OOD) inputs, the model can no longer make valid predictions, and its error is potentially unbounded. Testing OOD detection methods on real-world datasets is complicated by the ambiguity around which inputs are in-distribution (ID) or OOD. We design a benchmark for OOD detection, which includes three novel and easily-visualisable toy examples. These simple examples provide direct and intuitive insight into whether the detector is able to detect (1) linear and (2) non-linear concepts and (3) identify thin ID subspaces (needles) within high-dimensional spaces (haystacks). We use our benchmark to evaluate the performance of various methods from the literature. Since tactile examples of OOD inputs may benefit OOD detection, we also review several simple methods to synthesise OOD inputs for supervised training. We introduce two improvements, $t$-poking and OOD sample weighting, to make supervised detectors more precise at the ID-OOD boundary. This is especially important when conflicts between real ID and synthetic OOD sample blur the decision boundary. Finally, we provide recommendations for constructing and applying out-of-distribution detectors in machine learning.
Related papers
- Enhancing OOD Detection Using Latent Diffusion [5.093257685701887]
Out-of-Distribution (OOD) detection algorithms have been developed to identify unknown samples or objects in real-world deployments.
We propose an Outlier Aware Learning framework, which synthesizes OOD training data in the latent space.
We also develop a knowledge distillation module to prevent the degradation of ID classification accuracy when training with OOD data.
arXiv Detail & Related papers (2024-06-24T11:01:43Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - Can Pre-trained Networks Detect Familiar Out-of-Distribution Data? [37.36999826208225]
We study the effect of PT-OOD on the OOD detection performance of pre-trained networks.
We find that the low linear separability of PT-OOD in the feature space heavily degrades the PT-OOD detection performance.
We propose a unique solution to large-scale pre-trained models: Leveraging powerful instance-by-instance discriminative representations of pre-trained models.
arXiv Detail & Related papers (2023-10-02T02:01:00Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems.
We propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component.
We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection.
arXiv Detail & Related papers (2023-07-24T18:50:49Z) - Using Semantic Information for Defining and Detecting OOD Inputs [3.9577682622066264]
Out-of-distribution (OOD) detection has received some attention recently.
We demonstrate that the current detectors inherit the biases in the training dataset.
This can render the current OOD detectors impermeable to inputs lying outside the training distribution but with the same semantic information.
We perform OOD detection on semantic information extracted from the training data of MNIST and COCO datasets.
arXiv Detail & Related papers (2023-02-21T21:31:20Z) - Unsupervised Evaluation of Out-of-distribution Detection: A Data-centric
Perspective [55.45202687256175]
Out-of-distribution (OOD) detection methods assume that they have test ground truths, i.e., whether individual test samples are in-distribution (IND) or OOD.
In this paper, we are the first to introduce the unsupervised evaluation problem in OOD detection.
We propose three methods to compute Gscore as an unsupervised indicator of OOD detection performance.
arXiv Detail & Related papers (2023-02-16T13:34:35Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD detection is a key component of a reliable machine-learning model for any industry-scale application.
We propose POORE - POsthoc pseudo-Ood REgularization, that generates pseudo-OOD samples using in-distribution (IND) data.
We extensively evaluate our framework on three real-world dialogue systems, achieving new state-of-the-art in OOD detection.
arXiv Detail & Related papers (2022-10-17T14:32:02Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild.
Recent methods use auxiliary outlier data to regularize the model for improved OOD detection.
We propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples.
arXiv Detail & Related papers (2022-02-07T15:38:39Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.