General-Purpose Multi-Modal OOD Detection Framework
- URL: http://arxiv.org/abs/2307.13069v1
- Date: Mon, 24 Jul 2023 18:50:49 GMT
- Title: General-Purpose Multi-Modal OOD Detection Framework
- Authors: Viet Duong, Qiong Wu, Zhengyi Zhou, Eric Zavesky, Jiahe Chen,
Xiangzhou Liu, Wen-Ling Hsu, Huajie Shao
- Abstract summary: Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems.
We propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component.
We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection.
- Score: 5.287829685181842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection identifies test samples that differ from
the training data, which is critical to ensuring the safety and reliability of
machine learning (ML) systems. While a plethora of methods have been developed
to detect uni-modal OOD samples, only a few have focused on multi-modal OOD
detection. Current contrastive learning-based methods primarily study
multi-modal OOD detection in a scenario where both a given image and its
corresponding textual description come from a new domain. However, real-world
deployments of ML systems may face more anomaly scenarios caused by multiple
factors like sensor faults, bad weather, and environmental changes. Hence, the
goal of this work is to simultaneously detect from multiple different OOD
scenarios in a fine-grained manner. To reach this goal, we propose a
general-purpose weakly-supervised OOD detection framework, called WOOD, that
combines a binary classifier and a contrastive learning component to reap the
benefits of both. In order to better distinguish the latent representations of
in-distribution (ID) and OOD samples, we adopt the Hinge loss to constrain
their similarity. Furthermore, we develop a new scoring metric to integrate the
prediction results from both the binary classifier and contrastive learning for
identifying OOD samples. We evaluate the proposed WOOD model on multiple
real-world datasets, and the experimental results demonstrate that the WOOD
model outperforms the state-of-the-art methods for multi-modal OOD detection.
Importantly, our approach is able to achieve high accuracy in OOD detection in
three different OOD scenarios simultaneously. The source code will be made
publicly available upon publication.
Related papers
- Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - MultiOOD: Scaling Out-of-Distribution Detection for Multiple Modalities [11.884004583641325]
We introduce the first-of-its-kind benchmark, MultiOOD, characterized by diverse dataset sizes and varying modality combinations.
We first evaluate existing unimodal OOD detection algorithms on MultiOOD, observing that the mere inclusion of additional modalities yields substantial improvements.
We introduce a novel outlier synthesis method, NP-Mix, which explores broader feature spaces by leveraging the information from nearest neighbor classes.
arXiv Detail & Related papers (2024-05-27T17:59:02Z) - Toward a Realistic Benchmark for Out-of-Distribution Detection [3.8038269045375515]
We introduce a comprehensive benchmark for OOD detection based on ImageNet and Places365.
Several techniques can be used to determine which classes should be considered in-distribution, yielding benchmarks with varying properties.
arXiv Detail & Related papers (2024-04-16T11:29:43Z) - Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model [0.0]
Out-of-distribution (OOD) detection is a critical task to ensure the reliability and security of machine learning models.
In this paper, a novel method called ODPC is proposed, in which specific prompts to generate OOD peer classes of ID semantics are designed by a large language model.
Experiments on five benchmark datasets show that the method we propose can yield state-of-the-art results.
arXiv Detail & Related papers (2024-03-20T06:04:05Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained.
This paper introduces OOD knowledge distillation, a pioneering learning framework applicable whether or not training ID data is available.
arXiv Detail & Related papers (2023-11-14T08:05:02Z) - Meta OOD Learning for Continuously Adaptive OOD Detection [38.28089655572316]
Out-of-distribution (OOD) detection is crucial to modern deep learning applications.
We propose a novel and more realistic setting called continuously adaptive out-of-distribution (CAOOD) detection.
We develop meta OOD learning (MOL) by designing a learning-to-adapt diagram such that a good OOD detection model is learned during the training process.
arXiv Detail & Related papers (2023-09-21T01:05:45Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD detection is a key component of a reliable machine-learning model for any industry-scale application.
We propose POORE - POsthoc pseudo-Ood REgularization, that generates pseudo-OOD samples using in-distribution (IND) data.
We extensively evaluate our framework on three real-world dialogue systems, achieving new state-of-the-art in OOD detection.
arXiv Detail & Related papers (2022-10-17T14:32:02Z) - A Simple Test-Time Method for Out-of-Distribution Detection [45.11199798139358]
This paper proposes a simple Test-time Linear Training (ETLT) method for OOD detection.
We find that the probabilities of input images being out-of-distribution are surprisingly linearly correlated to the features extracted by neural networks.
We propose an online variant of the proposed method, which achieves promising performance and is more practical in real-world applications.
arXiv Detail & Related papers (2022-07-17T16:02:58Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.