論文の概要: Spatial Context-Driven Positive Pair Sampling for Enhanced Histopathology Image Classification
- arxiv url: http://arxiv.org/abs/2503.05170v1
- Date: Fri, 07 Mar 2025 06:31:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 15:56:44.313745
- Title: Spatial Context-Driven Positive Pair Sampling for Enhanced Histopathology Image Classification
- Title(参考訳): 組織像の高次分類のための空間文脈駆動型ポジティブペアサンプリング
- Authors: Willmer Rafell Quinones Robles, Sakonporn Noree, Young Sin Ko, Bryan Wong, Jongwoo Kim, Mun Yong Yi,
- Abstract要約: 自己教師型学習(SSL)のための空間文脈駆動型ポジティブペアサンプリング戦略を導入する。
提案手法では,空間コヒーレンスを利用してパッチレベルの表現を強化し,スライドレベルの分類性能を向上させる。
複数のデータセットに対する実験により,標準的な手法に比べて,分類精度を5%から10%向上させることが判明した。
- 参考スコア(独自算出の注目度): 2.0451307225357427
- License:
- Abstract: Deep learning has demonstrated great promise in cancer classification from whole-slide images (WSIs) but remains constrained by the need for extensive annotations. Annotation-free methods, such as multiple instance learning (MIL) and self-supervised learning (SSL), have emerged to address this challenge; however, current SSL techniques often depend on synthetic augmentations or temporal context, which may not adequately capture the intricate spatial relationships inherent to histopathology. In this work, we introduce a novel spatial context-driven positive pair sampling strategy for SSL that leverages the natural coherence of adjacent patches in WSIs. By constructing biologically relevant positive pairs from spatially proximate patches, our approach harnesses inherent spatial coherence to enhance patch-level representations, ultimately boosting slide-level classification performance. Experiments on multiple datasets reveal that our strategy improves classification accuracy by 5\% to 10\% over the standard method, paving the way for more clinically relevant AI models in cancer diagnosis. The code is available at https://anonymous.4open.science/r/contextual-pairs-E72F/.
- Abstract(参考訳): 深層学習は、全スライディング画像(WSI)からがんの分類において大きな可能性を証明しているが、広範なアノテーションの必要性に制約されている。
マルチインスタンス学習(MIL)や自己教師付き学習(SSL)といったアノテーションのない手法がこの課題に対処するために登場したが、現在のSSL技術は、しばしば人工的な拡張や時間的文脈に依存しており、それは病理学に固有の複雑な空間的関係を適切に捉えていない。
本稿では,隣接パッチの自然なコヒーレンスを生かしたSSLのための空間文脈駆動型正対サンプリング手法を提案する。
空間近位パッチから生物学的に関連性のある正のペアを構築することで、本手法は固有の空間コヒーレンスを利用してパッチレベルの表現を強化し、最終的にスライドレベルの分類性能を向上する。
複数のデータセットに対する実験により、我々の戦略は標準的な方法で分類精度を5倍から10倍に改善し、がん診断におけるより臨床的に関連するAIモデルへの道を開くことが明らかとなった。
コードはhttps://anonymous.4open.science/r/contextual-pairs-E72F/で公開されている。
関連論文リスト
- Contrastive Learning with Synthetic Positives [11.932323457691945]
近隣住民との対比学習は、最も効率的な自己教師付き学習(SSL)技術の1つであることが証明されている。
本稿では,NCLP(Contrastive Learning with Synthetic Positives)という新しいアプローチを提案する。
NCLPは、無条件拡散モデルによって生成された合成画像を利用して、モデルが多様な正から学ぶのに役立つ追加の正として利用する。
論文 参考訳(メタデータ) (2024-08-30T01:47:43Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
クラス非依存動作予測のための半教師あり学習の可能性について検討する。
我々のフレームワークは一貫性に基づく自己学習パラダイムを採用しており、ラベルのないデータからモデルを学習することができる。
本手法は,弱さと完全教師付き手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2023-12-13T09:32:50Z) - NearbyPatchCL: Leveraging Nearby Patches for Self-Supervised Patch-Level
Multi-Class Classification in Whole-Slide Images [10.8479107614771]
全スライディング画像(WSI)解析は、がんの診断と治療において重要な役割を担っている。
本稿では,新しい自己教師型学習手法であるNearby Patch Contrastive Learning(NearbyPatchCL)を紹介する。
本手法は,トップ1分類精度87.56%で,教師付きベースラインと最先端SSL法を著しく上回っている。
論文 参考訳(メタデータ) (2023-12-12T18:24:44Z) - Improving Representation Learning for Histopathologic Images with
Cluster Constraints [31.426157660880673]
自己教師型学習(SSL)事前学習戦略が,現実的な代替手段として浮上している。
転送可能な表現学習と意味的に意味のあるクラスタリングのためのSSLフレームワークを導入する。
我々の手法は、下流の分類やクラスタリングタスクにおいて一般的なSSLメソッドよりも優れています。
論文 参考訳(メタデータ) (2023-10-18T21:20:44Z) - Spatiotemporal Self-supervised Learning for Point Clouds in the Wild [65.56679416475943]
空間領域と時間領域の両方で正のペアを利用するSSL戦略を導入する。
2つの大規模LiDARデータセット上で,自己教師型トレーニングによって実施した広範囲な実験を通じて,このアプローチのメリットを実証する。
論文 参考訳(メタデータ) (2023-03-28T18:06:22Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
深層学習のためのクラス内適応拡張(IAA)フレームワークを提案する。
クラスごとのクラス内変動を合理的に推定し, 適応型合成試料を生成し, 硬質試料の採掘を支援する。
本手法は,検索性能の最先端手法を3%~6%向上させる。
論文 参考訳(メタデータ) (2022-11-29T14:52:38Z) - Patient-level Microsatellite Stability Assessment from Whole Slide
Images By Combining Momentum Contrast Learning and Group Patch Embeddings [6.40476282000118]
現在のアプローチでは、WSIから抽出された小さなパッチを最初に分類することで、WSIの高分解能をバイパスしている。
本稿では,WSI の高分解能情報を活用したパッチ埋め込みのモーメントコントラスト学習手法を提案する。
本手法は, パッチレベルの分類法や患者レベルの集計法と比較して, 最大で7.4%精度が向上する。
論文 参考訳(メタデータ) (2022-08-22T16:31:43Z) - Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of
Semi-Supervised Learning and Active Learning [60.26659373318915]
アクティブラーニング(AL)と半教師付きラーニング(SSL)は2つの効果があるが、しばしば孤立している。
本稿では、SSL-ALの潜在的な優位性をさらに調査するために、革新的な一貫性に基づく仮想aDvErialアルゴリズムを提案する。
2つの実世界のケーススタディは、提案したデータサンプリングアルゴリズムの適用と展開の実践的な産業価値を可視化する。
論文 参考訳(メタデータ) (2022-06-07T13:28:43Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
ラベルなしサンプルを多用する新たなパラダイムとして,自己教師型学習が登場している。
SSLを用いたグラフニューラルネットワーク(GNNs)のトレーニング方法の統一レビューを提供します。
gnnに対するssl手法の処理は,様々な手法の類似性と相違に光を当て,新しい手法やアルゴリズムの開発段階を定めている。
論文 参考訳(メタデータ) (2021-02-22T03:43:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。