Reward-Centered ReST-MCTS: A Robust Decision-Making Framework for Robotic Manipulation in High Uncertainty Environments
- URL: http://arxiv.org/abs/2503.05226v1
- Date: Fri, 07 Mar 2025 08:25:04 GMT
- Title: Reward-Centered ReST-MCTS: A Robust Decision-Making Framework for Robotic Manipulation in High Uncertainty Environments
- Authors: Xibai Wang,
- Abstract summary: This paper introduces Reward-Centered ReST-MCTS, a novel framework that enhances Monte Carlo Tree Search.<n>The core of our approach is the Rewarding Center, which refines search trajectories by dynamically assigning partial rewards.<n>Compared to baseline methods, our framework achieves a 2-4% accuracy improvement while maintaining computational feasibility.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monte Carlo Tree Search (MCTS) has emerged as a powerful tool for decision-making in robotics, enabling efficient exploration of large search spaces. However, traditional MCTS methods struggle in environments characterized by high uncertainty and noisy data due to their reliance on final-step reward evaluation. The lack of intermediate feedback during search often results in suboptimal decision-making and computational inefficiencies. This paper introduces Reward-Centered ReST-MCTS, a novel framework that enhances MCTS by incorporating intermediate reward shaping. The core of our approach is the Rewarding Center, which refines search trajectories by dynamically assigning partial rewards using rule-based validation, heuristic guidance, and neural estimation. By integrating these mechanisms, our method enables real-time optimization of search paths, mitigating the effects of error propagation. We evaluate Reward-Centered ReST-MCTS in robotic manipulation tasks under high uncertainty, demonstrating consistent improvements in decision accuracy. Compared to baseline methods, including Chain-of-Thought (CoT) prompting and Vanilla ReST-MCTS, our framework achieves a 2-4% accuracy improvement while maintaining computational feasibility. Ablation studies confirm the effectiveness of intermediate feedback in search refinement, particularly in pruning incorrect decision paths early. Furthermore, robustness tests show that our method retains high performance across varying levels of uncertainty.
Related papers
- RbFT: Robust Fine-tuning for Retrieval-Augmented Generation against Retrieval Defects [12.5122702720856]
We propose Robust Fine-Tuning (RbFT) to enhance the resilience of large language models against retrieval defects.
Experimental results demonstrate that RbFT significantly improves the robustness of RAG systems across diverse retrieval conditions.
arXiv Detail & Related papers (2025-01-30T14:15:09Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
We propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR)<n>ReARTeR enhances RAG systems' reasoning capabilities through post-training and test-time scaling.<n> Experimental results on multi-step reasoning benchmarks demonstrate significant improvements.
arXiv Detail & Related papers (2025-01-14T05:56:26Z) - Bisimulation metric for Model Predictive Control [44.301098448479195]
Bisimulation Metric for Model Predictive Control (BS-MPC) is a novel approach that incorporates bisimulation metric loss in its objective function to directly optimize the encoder.
BS-MPC improves training stability, robustness against input noise, and computational efficiency by reducing training time.
We evaluate BS-MPC on both continuous control and image-based tasks from the DeepMind Control Suite.
arXiv Detail & Related papers (2024-10-06T17:12:10Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments [13.163784646113214]
Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains.
We present AMROD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain.
Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels.
arXiv Detail & Related papers (2024-06-24T08:30:03Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and human preferences can lead to catastrophic outcomes in the real world.<n>Recent methods aim to mitigate misalignment by learning reward functions from human preferences.<n>We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z) - CCE: Sample Efficient Sparse Reward Policy Learning for Robotic Navigation via Confidence-Controlled Exploration [72.24964965882783]
Confidence-Controlled Exploration (CCE) is designed to enhance the training sample efficiency of reinforcement learning algorithms for sparse reward settings such as robot navigation.
CCE is based on a novel relationship we provide between gradient estimation and policy entropy.
We demonstrate through simulated and real-world experiments that CCE outperforms conventional methods that employ constant trajectory lengths and entropy regularization.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
We introduce a stepwise self-evaluation mechanism to guide and calibrate the reasoning process of Large Language Model (LLM)
We propose a decoding algorithm integrating the self-evaluation guidance via beam search.
Our approach surpasses the corresponding Codex-backboned baselines in few-shot accuracy by $6.34%$, $9.56%$, and $5.46%$ on the GSM8K, AQuA, and StrategyQA.
arXiv Detail & Related papers (2023-05-01T02:37:59Z) - MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement
Learning [36.14516028564416]
This paper proposes an innovative Multiple Model Kalman Temporal Difference (MM-KTD) framework to learn optimal control policies.
An active learning method is proposed to enhance the sampling efficiency of the system.
Experimental results show superiority of the MM-KTD framework in comparison to its state-of-the-art counterparts.
arXiv Detail & Related papers (2020-05-30T06:39:55Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.