Discrete Contrastive Learning for Diffusion Policies in Autonomous Driving
- URL: http://arxiv.org/abs/2503.05229v1
- Date: Fri, 07 Mar 2025 08:26:04 GMT
- Title: Discrete Contrastive Learning for Diffusion Policies in Autonomous Driving
- Authors: Kalle Kujanpää, Daulet Baimukashev, Farzeen Munir, Shoaib Azam, Tomasz Piotr Kucner, Joni Pajarinen, Ville Kyrki,
- Abstract summary: We propose a novel approach that leverages contrastive learning to extract a dictionary of driving styles from pre-existing human driving data.<n>Our empirical evaluation confirms that the behaviors generated by our approach are both safer and more human-like than those of the machine-learning-based baseline methods.
- Score: 18.624545462468642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning to perform accurate and rich simulations of human driving behaviors from data for autonomous vehicle testing remains challenging due to human driving styles' high diversity and variance. We address this challenge by proposing a novel approach that leverages contrastive learning to extract a dictionary of driving styles from pre-existing human driving data. We discretize these styles with quantization, and the styles are used to learn a conditional diffusion policy for simulating human drivers. Our empirical evaluation confirms that the behaviors generated by our approach are both safer and more human-like than those of the machine-learning-based baseline methods. We believe this has the potential to enable higher realism and more effective techniques for evaluating and improving the performance of autonomous vehicles.
Related papers
- HAD-Gen: Human-like and Diverse Driving Behavior Modeling for Controllable Scenario Generation [13.299893784290733]
HAD-Gen is a framework for realistic traffic scenario generation that simulates diverse human-like driving behaviors.
The proposed framework achieves a 90.96% goal-reaching rate, an off-road rate of 2.08%, and a collision rate of 6.91% in the generalization test.
arXiv Detail & Related papers (2025-03-19T09:38:45Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
We propose Iso-Dream++, a model-based reinforcement learning approach.
We perform policy optimization based on the decoupled latent imaginations.
This enables long-horizon visuomotor control tasks to benefit from isolating mixed dynamics sources in the wild.
arXiv Detail & Related papers (2023-03-27T02:55:56Z) - Imitation Is Not Enough: Robustifying Imitation with Reinforcement
Learning for Challenging Driving Scenarios [147.16925581385576]
We show how imitation learning combined with reinforcement learning can substantially improve the safety and reliability of driving policies.
We train a policy on over 100k miles of urban driving data, and measure its effectiveness in test scenarios grouped by different levels of collision likelihood.
arXiv Detail & Related papers (2022-12-21T23:59:33Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Learning to drive from a world on rails [78.28647825246472]
We learn an interactive vision-based driving policy from pre-recorded driving logs via a model-based approach.
A forward model of the world supervises a driving policy that predicts the outcome of any potential driving trajectory.
Our method ranks first on the CARLA leaderboard, attaining a 25% higher driving score while using 40 times less data.
arXiv Detail & Related papers (2021-05-03T05:55:30Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Action-Based Representation Learning for Autonomous Driving [8.296684637620551]
We propose to use action-based driving data for learning representations.
Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery.
arXiv Detail & Related papers (2020-08-21T10:49:13Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
This paper investigates how end-to-end driving models can be improved to drive more accurately and human-like.
We exploit semantic and visual maps from HERE Technologies and augment the existing Drive360 dataset with such.
Our models are trained and evaluated on the Drive360 + HERE dataset, which features 60 hours and 3000 km of real-world driving data.
arXiv Detail & Related papers (2020-07-10T22:25:27Z) - Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars [1.160208922584163]
We introduce a model-free, deep reinforcement learning approach to generate automated human-like driving policies.
We study a static obstacle avoidance task on a two-lane highway road in simulation.
We demonstrate that our approach leads to human-like driving policies.
arXiv Detail & Related papers (2020-06-07T18:20:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.