Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images
- URL: http://arxiv.org/abs/2102.13262v1
- Date: Fri, 26 Feb 2021 02:08:07 GMT
- Title: Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images
- Authors: Yu Shen, Laura Zheng, Manli Shu, Weizi Li, Tom Goldstein, Ming C. Lin
- Abstract summary: We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
- Score: 58.287120077778205
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: For safety of autonomous driving, vehicles need to be able to drive under
various lighting, weather, and visibility conditions in different environments.
These external and environmental factors, along with internal factors
associated with sensors, can pose significant challenges to perceptual data
processing, hence affecting the decision-making and control of the vehicle. In
this work, we address this critical issue by introducing a framework for
analyzing robustness of the learning algorithm w.r.t varying quality in the
image input for autonomous driving. Using the results of sensitivity analysis,
we further propose an algorithm to improve the overall performance of the task
of "learning to steer". The results show that our approach is able to enhance
the learning outcomes up to 48%. A comparative study drawn between our approach
and other related techniques, such as data augmentation and adversarial
training, confirms the effectiveness of our algorithm as a way to improve the
robustness and generalization of neural network training for autonomous
driving.
Related papers
- A Safe and Efficient Self-evolving Algorithm for Decision-making and Control of Autonomous Driving Systems [19.99282698119699]
Self-evolving autonomous vehicles are expected to cope with unknown scenarios in the real-world environment.
reinforcement learning is able to self evolve by learning the optimal policy.
This paper proposes a hybrid Mechanism-Experience-Learning augmented approach.
arXiv Detail & Related papers (2024-08-22T08:05:03Z) - 3D Object Visibility Prediction in Autonomous Driving [6.802572869909114]
We present a novel attribute and its corresponding algorithm: 3D object visibility.
Our proposal of this attribute and its computational strategy aims to expand the capabilities for downstream tasks.
arXiv Detail & Related papers (2024-03-06T13:07:42Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
Reinforcement learning algorithms have emerged as a promising approach to address these challenges.
Here, we address the problem of efficiently and safely navigating T-intersections using a lower-cost, single-agent approach.
Our results reveal that the proposed approach enables the AV to effectively navigate T-intersections, outperforming previous methods in terms of travel delays, collision minimization, and overall cost.
arXiv Detail & Related papers (2023-09-30T10:54:02Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Reinforcement Learning for Autonomous Driving with Latent State
Inference and Spatial-Temporal Relationships [46.965260791099986]
We show that explicitly inferring the latent state and encoding spatial-temporal relationships in a reinforcement learning framework can help address this difficulty.
We encode prior knowledge on the latent states of other drivers through a framework that combines the reinforcement learner with a supervised learner.
The proposed framework significantly improves performance in the context of navigating T-intersections compared with state-of-the-art baseline approaches.
arXiv Detail & Related papers (2020-11-09T08:55:12Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
We propose a visual analytics system, VATLD, to assess, understand, and improve the accuracy and robustness of traffic light detectors in autonomous driving applications.
The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization.
We also demonstrate the effectiveness of various performance improvement strategies with our visual analytics system, VATLD, and illustrate some practical implications for safety-critical applications in autonomous driving.
arXiv Detail & Related papers (2020-09-27T22:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.