ColFigPhotoAttnNet: Reliable Finger Photo Presentation Attack Detection Leveraging Window-Attention on Color Spaces
- URL: http://arxiv.org/abs/2503.05247v1
- Date: Fri, 07 Mar 2025 09:00:14 GMT
- Title: ColFigPhotoAttnNet: Reliable Finger Photo Presentation Attack Detection Leveraging Window-Attention on Color Spaces
- Authors: Anudeep Vurity, Emanuela Marasco, Raghavendra Ramachandra, Jongwoo Park,
- Abstract summary: Finger photo Presentation Attack Detection (PAD) can significantly strengthen smartphone device security.<n>PAD is designed to operate on images acquired by specific capture devices, leading to poor generalization and a lack of robustness.<n>In this paper, we introduce the ColFigPhotoAttnNet architecture designed based on window attention on color channels, followed by the nested residual network as the predictor.
- Score: 3.469092036444926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finger photo Presentation Attack Detection (PAD) can significantly strengthen smartphone device security. However, these algorithms are trained to detect certain types of attacks. Furthermore, they are designed to operate on images acquired by specific capture devices, leading to poor generalization and a lack of robustness in handling the evolving nature of mobile hardware. The proposed investigation is the first to systematically analyze the performance degradation of existing deep learning PAD systems, convolutional and transformers, in cross-capture device settings. In this paper, we introduce the ColFigPhotoAttnNet architecture designed based on window attention on color channels, followed by the nested residual network as the predictor to achieve a reliable PAD. Extensive experiments using various capture devices, including iPhone13 Pro, GooglePixel 3, Nokia C5, and OnePlusOne, were carried out to evaluate the performance of proposed and existing methods on three publicly available databases. The findings underscore the effectiveness of our approach.
Related papers
- DAOcc: 3D Object Detection Assisted Multi-Sensor Fusion for 3D Occupancy Prediction [11.349017382503986]
Multi-sensor fusion significantly enhances the accuracy and robustness of 3D semantic occupancy prediction.
Most existing approaches depend on large image resolutions and complex networks to achieve top performance.
We propose BEcc, a novel multi-modal occupancy prediction framework that leverages 3D object detection supervision to assist in achieving superior performance.
arXiv Detail & Related papers (2024-09-30T05:53:31Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field.
We propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector.
arXiv Detail & Related papers (2023-12-13T09:24:42Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images.
We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios.
arXiv Detail & Related papers (2023-11-30T21:11:20Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - M3FAS: An Accurate and Robust MultiModal Mobile Face Anti-Spoofing System [39.37647248710612]
Face presentation attacks (FPA) have brought increasing concerns to the public through various malicious applications.
We devise an accurate and robust MultiModal Mobile Face Anti-Spoofing system named M3FAS.
arXiv Detail & Related papers (2023-01-30T12:37:04Z) - On the Adversarial Robustness of Camera-based 3D Object Detection [21.091078268929667]
We investigate the robustness of leading camera-based 3D object detection approaches under various adversarial conditions.
We find that bird's-eye-view-based representations exhibit stronger robustness against localization attacks.
depth-estimation-free approaches have the potential to show stronger robustness.
incorporating multi-frame benign inputs can effectively mitigate adversarial attacks.
arXiv Detail & Related papers (2023-01-25T18:59:15Z) - GDIP: Gated Differentiable Image Processing for Object-Detection in
Adverse Conditions [15.327704761260131]
We present a Gated Differentiable Image Processing (GDIP) block, a domain-agnostic network architecture.
Our proposed GDIP block learns to enhance images directly through the downstream object detection loss.
We demonstrate significant improvement in detection performance over several state-of-the-art methods.
arXiv Detail & Related papers (2022-09-29T16:43:13Z) - Aurora Guard: Reliable Face Anti-Spoofing via Mobile Lighting System [103.5604680001633]
Anti-spoofing against high-resolution rendering replay of paper photos or digital videos remains an open problem.
We propose a simple yet effective face anti-spoofing system, termed Aurora Guard (AG)
arXiv Detail & Related papers (2021-02-01T09:17:18Z) - Camera Invariant Feature Learning for Generalized Face Anti-spoofing [95.30490139294136]
We describe a framework that eliminates the influence of inherent variance from acquisition cameras at the feature level.
Experiments show that the proposed method can achieve better performance in both intra-dataset and cross-dataset settings.
arXiv Detail & Related papers (2021-01-25T13:40:43Z) - YOLOpeds: Efficient Real-Time Single-Shot Pedestrian Detection for Smart
Camera Applications [2.588973722689844]
This work addresses the challenge of achieving a good trade-off between accuracy and speed for efficient deployment of deep-learning-based pedestrian detection in smart camera applications.
A computationally efficient architecture is introduced based on separable convolutions and proposes integrating dense connections across layers and multi-scale feature fusion.
Overall, YOLOpeds provides real-time sustained operation of over 30 frames per second with detection rates in the range of 86% outperforming existing deep learning models.
arXiv Detail & Related papers (2020-07-27T09:50:11Z) - Fingerprint Presentation Attack Detection: A Sensor and Material
Agnostic Approach [44.46178415547532]
We propose a robust presentation attack detection (PAD) solution with improved cross-material and cross-sensor generalization.
Specifically, we build on any CNN-based architecture trained for fingerprint spoof detection combined with cross-material spoof generalization.
We also incorporate adversarial representation learning (ARL) in deep neural networks (DNN) to learn sensor and material invariant representations for PAD.
arXiv Detail & Related papers (2020-04-06T19:03:05Z) - Towards High Performance Human Keypoint Detection [87.1034745775229]
We find that context information plays an important role in reasoning human body configuration and invisible keypoints.
Inspired by this, we propose a cascaded context mixer ( CCM) which efficiently integrates spatial and channel context information.
To maximize CCM's representation capability, we develop a hard-negative person detection mining strategy and a joint-training strategy.
We present several sub-pixel refinement techniques for postprocessing keypoint predictions to improve detection accuracy.
arXiv Detail & Related papers (2020-02-03T02:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.